【題目】已知點,,點滿足,記點的軌跡為.
(1)求的方程;
(2)設(shè)直線與交于、兩點,求的面積(為坐標(biāo)原點);
(3)設(shè)是線段中垂線上的動點,過作的兩條切線、,、分別為切點,判斷是否存在定點,直線始終經(jīng)過點,若存在,求出點的坐標(biāo),若不存在,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高學(xué)生學(xué)習(xí)的數(shù)學(xué)的興趣,南京港師范大學(xué)附屬中學(xué)擬開設(shè)《數(shù)學(xué)史》、《微積分先修課程》、《數(shù)學(xué)探究》、《數(shù)學(xué)建!匪拈T校本選修課程,甲、乙、丙三位同學(xué)打算在上述四門課程中隨機選擇一門進行學(xué)習(xí),已知三人選擇課程時互不影響,且每人選擇每一門課程都是等可能的.
(1)求三位同學(xué)選擇的課程互不相同的概率:
(2)求甲、乙兩位同學(xué)不能選擇同一門課程,求三人共有多少種不同的選課種數(shù);
(3)若至少有兩位同學(xué)選擇《數(shù)學(xué)史》,求三人共有多少種不同的選課種數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機,若要擊落敵機,需命中機首2次或命中機中3次或命中機尾1次,已知A每次射擊,命中機首、機中、機尾的概率分別為0.2、0.4、0.1,未命中敵機的概率為0.3,且各次射擊相互獨立。若A至多射擊兩次,則他能擊落敵機的概率為( )
A. 0.23 B. 0.2 C. 0.16 D. 0.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)若兩條互相垂直的直線都經(jīng)過原點(兩條直線與坐標(biāo)軸都不重合)且與曲線分別交于點(異于原點),且,求這兩條直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:過點A,兩個焦點為(-1,0),(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)若,函數(shù)在處的切線方程為,求a、的值;
(2)若曲線上存在兩條互相平行的切線,其傾斜角為銳角,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)無窮數(shù)列的前項和為,已知,.
(1)求的值;
(2)求數(shù)列的通項公式;
(3)是否存在數(shù)列的一個無窮子數(shù)列,使對一切均成立?若存在,請寫出數(shù)列的所有通項公式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com