函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/d/hgxkp1.png" style="vertical-align:middle;" />,且滿足對(duì)于定義域內(nèi)任意的都有等式.
(1)求的值;
(2)判斷的奇偶性并證明;
(3)若,且在上是增函數(shù),解關(guān)于的不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對(duì)任意的x∈[0,+∞),有f(x)≤kx2成立,求實(shí)數(shù)k的最小值.]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一枚正方體骰子,六個(gè)面分別寫1、2、3、4、5、6的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是拋擲后,面向上的那一個(gè)數(shù)字”.已知和是先后拋擲該枚骰子得到的數(shù)字,函數(shù)
(1)若先拋擲骰子得到的數(shù)字是3,求再次拋擲骰子時(shí),使函數(shù)有零點(diǎn)的概率;
(2)求函數(shù)在區(qū)間(-3,+∞)上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)恒過定點(diǎn).
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中,.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間.(要寫推理過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) .
(1)求函數(shù)的零點(diǎn);
(2)若方程在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,g(x)=2|x|+a.
(1)當(dāng)a=0時(shí),解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),設(shè)
(1)求的單調(diào)區(qū)間;
(2)若以圖象上任意一點(diǎn)為切點(diǎn)的切線的斜率 恒成立,求實(shí)數(shù)的最小值;
(3)是否存在實(shí)數(shù),使得函數(shù)的圖象與的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com