分析 (Ⅰ)由已知利用二倍角的余弦函數公式可求cosA,進而利用同角三角函數基本關系式可求sinA的值,結合bccosA=3,可求bc=5,進而利用三角形面積公式即可計算得解.
(Ⅱ)由bc=5,又b+c=$4\sqrt{2}$,由余弦定理即可解得a的值.
解答 (本小題滿分12分)
解:(Ⅰ)∵cos$\frac{A}{2}$=$\frac{2\sqrt{5}}{5}$,
∴cos A=2cos2$\frac{A}{2}$-1=$\frac{3}{5}$,sin A=$\frac{4}{5}$,
又bccosA=3,
∴bc=5,
∴S△ABC=$\frac{1}{2}$bcsinA=2.…(6分)
(Ⅱ)由(Ⅰ)得bc=5,又b+c=$4\sqrt{2}$,
由余弦定理得a2=b2+c2-2bccos A=(b+c)2-2bc-2bccosA=16,
∴a=4. …(12分)
點評 本題主要考查了二倍角的余弦函數公式,同角三角函數基本關系式,三角形面積公式,余弦定理在解三角形中的應用,考查了轉化思想,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{7}$ | C. | $\frac{5}{7}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com