設(shè)平面向量,,已知函數(shù)在上的最大值為6.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若,.求的值.
(I)3;(II)
解析試題分析:(Ⅰ)首先利用平面向量的數(shù)量積計(jì)算公式,得到,
并化簡(jiǎn)為,根據(jù)角的范圍,得到
利用已知條件得到,求得,此類題目具有一定的綜合性,關(guān)鍵是熟練掌握三角公式,難度不大.
(Ⅱ)本小題應(yīng)注意角,以便于利用三角函數(shù)同角公式,確定正負(fù)號(hào)的選取.解題過(guò)程中,靈活變角,利用是解題的關(guān)鍵.
試題解析:
(Ⅰ),
, 2分
, 3分
∵, 4分
∴
∴, 5分
∴; 6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fc/3/dvy9o.png" style="vertical-align:middle;" />,
由得:,則, 7分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/48/8/hmftw4.png" style="vertical-align:middle;" />,則, 8分
因此,
所以, 9分
于是, 10分
. 12分
考點(diǎn):平面向量的數(shù)量積,平面向量的坐標(biāo)運(yùn)算,三角函數(shù)的和差倍半公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,給定,點(diǎn)為的中點(diǎn),點(diǎn)滿足,點(diǎn)滿足.
(1)求與的值;
(2)若三點(diǎn)坐標(biāo)分別為,求點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知P(x,y),A(-1,0),向量與=(1,1)共線。
(1)求y關(guān)于x的函數(shù)解析式;
(2)是否在直線y=2x和直線y=3x上分別存在一點(diǎn)B、C,使得滿足∠BPC為銳角時(shí)x取值集合為{x| x<-或x>}?若存在,求出這樣的B、C的坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com