【題目】若變量x,y滿足約束條件 ,且z=ax+3y的最小值為7,則a的值為( )
A.1
B.2
C.﹣2
D.不確定
【答案】B
【解析】解:由約束條件 作出可行域如圖,
聯(lián)立方程組求得A(2,1),B(4,5),C(1,2),
化目標(biāo)函數(shù)z=ax+3y為y= .
當(dāng)a>0時,由圖可知,當(dāng)直線y= 過A或C時,直線在y軸上的截距最小,z有最小值.
若過A,則2a+3=7,解得a=2;若過C,則a+6=7,解得a=1不合題意.
當(dāng)a<0時,由圖可知,當(dāng)直線y= 過A或B時,直線在y軸上的截距最小,z有最小值.
若過A,則2a+3=7,解得a=2,不合題意;若過B,則4a+15=7,解得a=﹣2,不合題意.
∴a的值為2.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)也為拋物線的焦點(diǎn).(1)若為橢圓上兩點(diǎn),且線段的中點(diǎn)為,求直線的斜率;
(2)若過橢圓的右焦點(diǎn)作兩條互相垂直的直線分別交橢圓于和,設(shè)線段的長分別為,證明是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在外接圓直徑為1的△ABC中,角A,B,C的對邊分別為a,b,c,設(shè)向量 =(a,cosB), =(b,cosA),且 ∥ , ≠ .
(1)求sinA+sinB的取值范圍;
(2)若abx=a+b,試確定實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實數(shù)m取何值時,復(fù)數(shù)z對應(yīng)的點(diǎn):
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點(diǎn)為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù));在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長度,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)求直線被曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校對校園進(jìn)行綠化,移栽香樟和桂花兩種大樹各2株,若香樟的成活率為,桂花的成活率為,假設(shè)每棵樹成活與否是相互獨(dú)立的.求:
(Ⅰ)兩種樹各成活一株的概率;
(Ⅱ)設(shè)ξ表示兩種樹成活的總株數(shù),求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com