已知四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=3,AB=2,BC=
3
,則二面角P-BD-A的正切值為
 
考點(diǎn):二面角的平面角及求法
專(zhuān)題:空間位置關(guān)系與距離,空間角
分析:首先利用線面的垂直轉(zhuǎn)化出二面角的平面角,進(jìn)一步通過(guò)解直角三角形求得結(jié)果.
解答: 解:四棱錐P-ABCD中,過(guò)點(diǎn)A做AE⊥BD
由于:PA⊥平面ABCD,
所以:PA⊥BD
所以:BD⊥平面PAE
所以:∠PEA是二面角P-BD-A的平面角.
又PA=3,AB=2,BC=
3
,底面ABCD是矩形,
解得:AE=
2
21
7

所以:tan∠PEA=
AP
AE
=
21
2

故答案為:
21
2
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):線面垂直的判定和性質(zhì)定理,二面角的平面角的應(yīng)用.屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:f(x)=2 x2-4x+3在(2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1,以坐標(biāo)原點(diǎn)為頂點(diǎn),曲線C的頂點(diǎn)為焦點(diǎn)的拋物線與曲線C的漸進(jìn)線的一個(gè)交點(diǎn)坐標(biāo)為(4,4),則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:(1)“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;(2)“a=3”是“直線ax+2y+3a=0與直線3x+(a-1)y=a-7相互垂直”的充要條件;(3)y=
x2+4
x2+3
的最小值為2;(4)“
f(-x)
f(x)
=1”是“y=f(x)是偶函數(shù)”的充要條件,其中假命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:x2-
y2
3
=1,若a>0,求點(diǎn)M(a,0)到雙曲線C的距離的最小值f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=|2x-1|+|1-x|.
(1)解不等式f(x)≤3x+4;
(2)對(duì)任意的x,不等式f(x)≥(m2-3m+3)•|x|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD中,A(-4,4),D(5,7),中心E在第一象限,且與y軸的距離為1個(gè)單位,求B,C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(x+1),函數(shù)y=g(x)的圖象與函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若a>1,x∈[0,1)時(shí),總有F(x)=f(x)+g(x)≥m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積是( 。 
A、16π-16
B、14π-16
C、16π
D、18π-16

查看答案和解析>>

同步練習(xí)冊(cè)答案