4.函數(shù)f(x)=$\frac{{x}^{2}}{x-1}$(x>1)的最小值為(  )
A.4B.3C.2D.1

分析 把函數(shù)解析式變形,然后利用基本不等式求最值.

解答 解:∵x>1,
∴f(x)=$\frac{{x}^{2}}{x-1}$=$\frac{(x-1)^{2}+2(x-1)+1}{x-1}$=$(x-1)+\frac{1}{x-1}+2$$≥2\sqrt{(x-1)•\frac{1}{x-1}}+2=4$.
當(dāng)且僅當(dāng)x-1=$\frac{1}{x-1}$,即x=2時(shí)上式取等號(hào).
∴函數(shù)f(x)=$\frac{{x}^{2}}{x-1}$(x>1)的最小值為4.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的最值及其幾何意義,訓(xùn)練了利用基本不等式求最值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等差數(shù)列{an}中,a3=0,a7-2a4=-1,則公差d等于( 。
A.-2B.$\frac{1}{2}$C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.6個(gè)電子產(chǎn)品中有2個(gè)次品,4個(gè)合格品,每次從中任取一個(gè)測(cè)試,測(cè)試完后不放回,直到兩個(gè)次品都找到為止,那么測(cè)試次數(shù)X的均值為(  )
A.$\frac{17}{15}$B.$\frac{11}{15}$C.$\frac{5}{3}$D.$\frac{64}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè),如圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),(104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( 。
A.90B.75C.60D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)三角形的三個(gè)內(nèi)角A,B,C成等差數(shù)列,則cosB=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知三被錐S-ABC的體積為$\frac{4\sqrt{5}}{3}$,底面△ABC是邊長(zhǎng)為2的正三角形,且所有頂點(diǎn)都在直徑為SC的球面上.則此球的半徑為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)z滿足(3-4i)z=|4+3i|,則$\overline{z}$的虛部為( 。
A.$-\frac{4}{5}i$B.$-\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{4}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)y=f(x)對(duì)x∈R滿足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=1-x2.設(shè)g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,10]內(nèi)零點(diǎn)的個(gè)數(shù)為( 。
A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,已知b=$\sqrt{2},c=1,B={45°}$,則此三角形有幾個(gè)解( 。
A.0B.1C.2D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案