7.如圖,已知正四棱錐側(cè)S-ABCD棱長為2,底面邊長為$\sqrt{2}$,點(diǎn)O為底面ABCD中心,點(diǎn)M為SC中點(diǎn),則異面直線OM與SB所成角的余弦值為$\frac{3}{4}$.

分析 連接DB,取SD的中點(diǎn)N,連接ON,MN,OC,則ON∥SB,∠MON是異面直線OM與SB所成角,求出三角形的三邊,利用余弦定理,可得結(jié)論.

解答 解:連接DB,取SD的中點(diǎn)N,連接ON,MN,OC,則ON∥SB,
∴∠MON是異面直線OM與SB所成角,
又cos∠SCO=$\frac{1}{2}$,∠SCO=60°
∴OM=1,
∵ON=1,MN=$\frac{\sqrt{2}}{2}$,
∴cos∠MON=$\frac{1+1-\frac{1}{2}}{2×1×1}$=$\frac{3}{4}$,
故答案為$\frac{3}{4}$.

點(diǎn)評 本題考查異面直線OM與SB所成角的余弦值,考查余弦定理的運(yùn)用,正確找出異面直線OM與SB所成角是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)的定義域?yàn)镽,當(dāng)x∈[-2,2]時,f(x)單調(diào)遞減,且函數(shù)f(x+2)為偶函數(shù),則下列結(jié)論正確的是( 。
A.f(π)<f(3)<f($\sqrt{2}$)B.f(π)<f($\sqrt{2}$)<f(3)C.f($\sqrt{2}$)<f(3)<f(π)D.f($\sqrt{2}$)<f(π)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義[x]表示不超過x的最大整數(shù),例如[2.11]=2,[-1.39]=-2,執(zhí)行如下圖所示的程序框圖,則輸出m的值為
( 。
A.$\frac{19}{3}$B.$\frac{53}{8}$C.$\frac{171}{6}$D.$\frac{185}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.簡陽羊肉湯已入選成都市級非遺項(xiàng)目,成為簡陽的名片.當(dāng)初向各地作了廣告推廣,同時廣告對銷售收益也有影響.在若干地區(qū)各投入4萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.
(Ⅰ)根據(jù)頻率分布直方圖,計算圖中各小長方形的寬度;
(Ⅱ)根據(jù)頻率分布直方圖,估計投入4萬元廣告費(fèi)用之后,銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(Ⅲ)按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬元)12345
銷售收益y(單位:百萬元)2327
表中的數(shù)據(jù)顯示,x與y之間存在線性相關(guān)關(guān)系,請將(Ⅱ)的結(jié)果填入空白欄,并計算y關(guān)于x的回歸方程.回歸直線的斜率和截距的最小二乘估計公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.空間四邊形OABC中,M,N分別是對邊OA,BC的中點(diǎn),點(diǎn)G為MN中點(diǎn),設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{OG}$可以用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示為( 。
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$D.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$-$\frac{1}{4}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x|x(x-3)≤0,x∈N},B={-1,0,1},則集合A∩B為(  )
A.{-1,0}B.{1}C.{0,1}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點(diǎn)P時拋物線y2=-4x上的動點(diǎn),設(shè)點(diǎn)P到此拋物線的準(zhǔn)線的距離為d1,到直線x+y-4=0的距離為d2,則d1+d2的最小值是( 。
A.2B.$\sqrt{2}$C.$\frac{5}{2}$D.$\frac{5\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a,b分別是△ABC內(nèi)角A,B的對邊,且bsin2A=$\sqrt{3}$acosAsinB,函數(shù)f(x)=sinAcos2x-sin2$\frac{A}{2}$sin 2x,x∈[0,$\frac{π}{2}$].
(Ⅰ)求A;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1,C2的極坐標(biāo)方程分別為ρ=2sinθ,ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)求C1和C2交點(diǎn)的極坐標(biāo);
(Ⅱ)直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),直線l與x軸的交點(diǎn)為P,且與C1交于A,B兩點(diǎn),求|PA|+|PB|.

查看答案和解析>>

同步練習(xí)冊答案