已知I=R,集合A={x|x2-3x+2≤0},集合B與∁RA的所有元素組成全集R,集合B與∁RA的元素公共部分組成集合{x|0<x<1或2<x<3},求集合B.
考點:交、并、補集的混合運算
專題:集合
分析:求出A中不等式的解集,確定出A,根據(jù)B與A補集組成全集R,
解答: 解:由A中的不等式變形得:(x-1)(x-2)≤0,
解得:1≤x≤2,即A={x|1≤x≤2},
∴∁RA={x|x<1或x>2},
∵B∪∁RA=R,B∩∁RA={x|0<x<1或2<x<3},
則B={x|0<x<3}.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,m,n為兩條不重合的直線,給出下列四個命題:
①若α⊥γ,β∥γ,則α⊥β;
②若α∥γ,β∥γ,則α∥β;
③若m∥α,n∥α,則m∥n;
④若α⊥γ,β⊥γ,α∩β=m,則m⊥γ;
其中真命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一船由西向東航行,在A處測得某島M的方位角為α,前進5km后到達B,測得此島的方位角為β,再前進xkm后到達C處,測得此島在其正北方向.已知該島周圍5km內(nèi)有暗礁.
(Ⅰ)若α=2β=60°,問該船有無觸礁危險?
(Ⅱ)若x=4,試問:當(dāng)α-β最大時,該船有無觸礁危險?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a-bsin(
π
3
-4x)
,其中a,b為實常數(shù),x∈R,已知函數(shù)f(x)的值域是[1,5],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(
3
,3).若函數(shù)f(x)=2sinα•cos2ωx+4cosα•sinωx•cosωx的圖象關(guān)于直線x=
π
2
對稱,其中ω為常數(shù),且ω∈(0,1).
(1)求f(x)的表達式及其最小正周期;
(2)若將y=f(x)圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?span id="bdzyqog" class="MathJye">
1
6
,再將所得圖象向右平移
π
3
個單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,設(shè)函數(shù)g(x)對任意x∈R,有g(shù)(x+
π
2
)=g(x),且當(dāng)x∈[0,
π
2
]時,g(x)=
1
2
-h(x),求函數(shù)g(x)在[-π,0]上的解析式.
(3)設(shè)(2)中所求得函數(shù)g(x),可使不等式g2(x)+4g(x)-a≥2x對任意x∈[-
π
12
,0]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1+a3+a5=21,a2+a4+a6=27,數(shù)列{bn}前n項和為Sn,且4Sn=3bn-a1
(1)求an,bn;
(2)當(dāng)n∈N*時,求cn=
4bn+1
bn-1
的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2
和g(x)=5x+2,求f(3),f(a+1),f(g(x))的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是由正整數(shù)組成的等比數(shù)列,公比q≠1,且a2
a3
2
,a1成等差數(shù)列.求
a3+a4
a4+a5
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點是F1(0,-
3
),F2(0,
3
)
,點P在橢圓上且滿足|PF1|+|PF2|=4,則橢圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

同步練習(xí)冊答案