已知函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043545836279.png" style="vertical-align:middle;" />的偶函數(shù). 當(dāng)時(shí), 若關(guān)于的方程有且只有7個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是      

試題分析:首先研究函數(shù)的性質(zhì),上是減函數(shù),在上是增函數(shù),時(shí),取極大值1,時(shí),取極小值,當(dāng)時(shí),,因此方程有7個(gè)根,則方程必有兩個(gè)根,其中,,

由此可得,,所以,解得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,過點(diǎn)且傾斜角為的直線交橢圓于兩點(diǎn),橢圓的離心率為,
(1)求橢圓的方程;
(2)若是橢圓上不同兩點(diǎn),軸,圓過點(diǎn),且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱圓為該橢圓的內(nèi)切圓.問橢圓是否存在過點(diǎn)的內(nèi)切圓?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044010241303.png" style="vertical-align:middle;" />,若存在常數(shù),使得對(duì)一切實(shí)數(shù)均成立,則稱為“圓錐托底型”函數(shù).
(1)判斷函數(shù)是否為“圓錐托底型”函數(shù)?并說明理由.
(2)若是“圓錐托底型” 函數(shù),求出的最大值.
(3)問實(shí)數(shù)滿足什么條件,是“圓錐托底型” 函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題表示的曲線是雙曲線;命題函數(shù)在區(qū)間上為增函數(shù),若“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)在區(qū)間上的增減性;
(3)若滿足:,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)都是定義在R上的偶函數(shù),若時(shí),,則為(    )
A.正數(shù)B.負(fù)數(shù)C.零D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義[x]表示不超過x的最大整數(shù),例如:[1.5]=1,[-1.5]=-2,若f(x)=sin(x-[x]),則下列結(jié)論中
①y=f(x)是奇是函數(shù)②.y=f(x)是周期函數(shù),周期為2③..y=f(x)的最小值為0,無最大值④.y=f(x)無最小值,最大值為sin1.正確的序號(hào)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知y=f(x)是定義在(-2,2)上的增函數(shù),若f(m-1)<f(1-2m),則實(shí)數(shù)m的取值范圍為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=.
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]時(shí)有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案