(2014·咸寧模擬)某幾何體的三視圖如圖所示(其中側(cè)視圖中的圓弧是半圓),則該幾何體的表面積為( )
A.92+14π B.82+14π
C.92+24π D.82+24π
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:填空題
已知定義在區(qū)間[0,1]上的函數(shù)y=f(x)圖象如圖所示,對于滿足0<x1<x2<1的任意x1,x2給出下列結(jié)論:
①f(x2)-f(x1)>x2-x1;
②x2f(x1)>x1f(x2);
③<f.
其中正確結(jié)論的序號是________.(把所有正確結(jié)論的序號都填寫在橫線上)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:解答題
(2014·海淀模擬)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中點.
(1)求證:A1B∥平面AEC1.
(2)求證:B1C⊥平面AEC1.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:填空題
(2014·寧波模擬)已知某幾何體的三視圖如圖所示,則該幾何體的體積為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題
用與球心距離為1的平面去截球,所得的截面面積為π,則球的體積為( )
A. B. C.8π D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題
已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x2-x+,0≤x≤3}.
(1)若A∩B=∅,求a的取值范圍;
(2)當a取使不等式x2+1≥ax恒成立的a的最小值時,求(∁RA)∩B.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:解答題
設(shè)橢圓E:的焦點在x軸上.
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1、F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q.證明:當a變化時,點P在某定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題
受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌 | 甲 |
|
| 乙 |
|
首次出現(xiàn)故障時間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車數(shù)量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤(萬元) | 1 | 2 | 3 | 1.8 | 2.9 |
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(3)該廠預(yù)計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題
(2014·長沙模擬)計算:=____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com