袋中有5只乒乓球,編號為1至5,從袋中任取3只,若以X表示取到的球中的最大號碼,試寫出X的概率分布
 
考點:離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計
分析:由題意知X=3,4,5,分別求出相應(yīng)的概率,由此能求出出X的概率分布.
解答: 解:由題意知X=3,4,5,
P(X=3)=
1
C
3
5
=
1
10
=0.1,
P(X=4)=
C
2
3
C
3
5
=0.3,
P(X=5)=
C
2
4
C
3
5
=
6
10
=0.6,
∴X的分布列為:
 X 3 4 5
 P 0.1 0.3 0.6
答案為:
 X 3 4 5
 P 0.1 0.3 0.6
點評:本題考查離散型隨機(jī)變量的概率分布的求法,是基礎(chǔ)題,解題時要注意排列組合知識的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)范圍內(nèi)分解因式:xy-1+x-y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)輸入整數(shù)x∈[1,12],執(zhí)行如圖所示的程序框圖,則輸出的x不小于39的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算tan16°+tan44°+
3
tan16°tan44°的結(jié)果等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(n)=log(n+1)(n+2)(n為正整數(shù)),若存在正整數(shù)k滿足:f(1)•f(2)…f(n)=k,那么我們稱k為“好整數(shù)”.當(dāng)n∈[1,2013]時,則所有符合條件的“好整數(shù)”之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實數(shù)x、y滿足
x-4y+4≥0
2x-3y-2≤0
(x≥0,y≥0),若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為1,則log2
1
a
+
2
b
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓mx2+4y2=4m的離心率e是方程2x2-7x+3=0的根,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為D的函數(shù)y=f(x)和常數(shù)c,若對任意正實數(shù)ξ,?x∈D,使得0<|f(x)-c|<ξ恒成立,則稱函數(shù)y=f(x)為“斂c函數(shù)”,現(xiàn)給出如下函數(shù):
①f(x)=x(x∈Z);
②f(x)=(
1
2
x+2(x∈Z);
③f(x)=log2x+1;
④f(x)=
2x-1
2x

其中為“斂2函數(shù)”的有(  )
A、①②B、③④
C、①②③D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x與y之間的一組數(shù)據(jù)如表所示,則y與x的線性回歸方程y=bx+a必過點(  )
 x1346
y0457
A、(3.5,4)
B、(2,2)
C、(3.5,2)
D、(2,4)

查看答案和解析>>

同步練習(xí)冊答案