在直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=,E為CD的中點,將△BCE沿BE折起,使得CO⊥DE,其中垂足O在線段DE內(nèi).
(1)求證:CO⊥平面ABED;
(2)問∠CEO(記為θ)多大時,三棱錐C-AOE的體積最大,最大值為多少.
(1)見解析(2),
【解析】(1)在直角梯形ABCD中,
CD=2AB,E為CD的中點,則AB=DE,
又AB∥DE,AD⊥AB,可知BE⊥CD.
在四棱錐C-ABED中,BE⊥DE,BE⊥CE,CE∩DE=E,CE,DE?平面CDE,
則BE⊥平面CDE.又BE?平面ABED,
所以平面ABED⊥平面CDE,
因為CO?平面CDE,
又CO⊥DE,且DE是平面ABED和平面CDE的相交直線,
故CO⊥平面ABED.
(2)由(1)知CO⊥平面ABED,
所以三棱錐C-AOE的體積V=S△AOE×OC=××OE×AD×OC.
由直角梯形ABCD中,CD=2AB=4,AD=,CE=2.
得在三棱錐C-AOE中,
OE=CEcos θ=2cos θ,OC=CEsin θ=2sin θ,
V=sin 2θ≤,
當且僅當sin 2θ=1,θ∈,即θ=時取等號(此時OE=<DE,O落在線段DE內(nèi)),
故當θ=時,三棱錐C-AOE的體積最大,最大值為.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復(fù)習知能提升演練1-7-3練習卷(解析版) 題型:選擇題
對一批產(chǎn)品的長度(單位:mm)進行抽樣檢測,下圖為檢測結(jié)果的頻率分布直方圖.根據(jù)標準,產(chǎn)品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取一件,則其為二等品的概率為 ( ).
A.0.09 B.0.20 C.0.25 D.0.45
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復(fù)習知能提升演練1-6-2練習卷(解析版) 題型:填空題
已知拋物線y2=8x的準線過雙曲線=1(a>0,b>0)的一個焦點,且雙曲線的離心率為2,則該雙曲線的方程為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復(fù)習知能提升演練1-5-3練習卷(解析版) 題型:解答題
如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD的中點.
(1)求證:B1E⊥AD1.
(2)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(3)若二面角A-B1E-A1的大小為30°,求AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復(fù)習知能提升演練1-5-3練習卷(解析版) 題型:選擇題
過正方形ABCD的頂點A,引PA⊥平面ABCD.若PA=BA,則平面ABP和平面CDP所成的二面角的大小是( ).
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復(fù)習知能提升演練1-5-2練習卷(解析版) 題型:選擇題
如圖所示,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD.則在三棱錐A-BCD中,下列命題正確的是( ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復(fù)習知能提升演練1-5-1練習卷(解析版) 題型:解答題
如圖所示是一幾何體的直觀圖、正(主)視圖、側(cè)(左)視圖、俯視圖.
(1)若F為PD的中點,求證:AF⊥面PCD;
(2)求幾何體BEC-APD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復(fù)習知能提升演練1-4-2練習卷(解析版) 題型:選擇題
已知數(shù)列{an}滿足an+1=+,且a1=,則該數(shù)列的前2 013項的和等于( ).
A. B.3019 C.1508 D. 013
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復(fù)習知能提升演練1-2-3練習卷(解析版) 題型:選擇題
已知函數(shù)f(x)=x(ln x-ax)有兩個極值點,則實數(shù)a的取值范圍是( ).
A.(-∞,0) B.(0,) C.(0,1) D.(0,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com