8.計(jì)算:($\frac{1}{2}$)-2+log23•log3$\frac{1}{4}$=2.

分析 直接利用指數(shù)、對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)求值.

解答 解:原式=22+log23•$\frac{{log}_{2}\frac{1}{4}}{{log}_{2}3}$
=4+log22-2=4-2=2,
故答案為:2.

點(diǎn)評(píng) 本題考查了指數(shù)、對(duì)數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)的會(huì)考題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.《九章算術(shù)》是我國(guó)古代的優(yōu)秀數(shù)學(xué)著作,在人類歷史上第一次提出負(fù)數(shù)的概率,內(nèi)容涉及方程、幾何、數(shù)列、面積、體積的計(jì)算等多方面,書(shū)的第6卷19題:“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.”如果竹由下往上均勻變細(xì)(各節(jié)容量成等差數(shù)列),則其余兩節(jié)的容量共多少升( 。
A.$1\frac{15}{66}$B.$1\frac{3}{22}$C.$2\frac{15}{66}$D.$2\frac{3}{22}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)g(x)=(a+1)x-2+1(a>0)的圖象恒過(guò)定點(diǎn)A,且點(diǎn)A又在函數(shù)$f(x)={log_{\sqrt{3}}}$(x+a)的圖象上.
(1)求實(shí)數(shù)a的值;
(2)當(dāng)方程|g(x+2)-2|=2b有兩個(gè)不等實(shí)根時(shí),求b的取值范圍;
(3)設(shè)an=g(n+2),bn=$\frac{{{a_n}-1}}{{{a_n}•{a_{n+1}}}},n∈{N^*}$,求證:b1+b2+b3+…+bn<$\frac{1}{3}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知,焦點(diǎn)在x軸上的橢圓的上下頂點(diǎn)分別為B2、B1,經(jīng)過(guò)點(diǎn)B2的直線l與以橢圓的中心為頂點(diǎn)、以B2為焦點(diǎn)的拋物線交于A、B兩點(diǎn),直線l與橢圓交于B2、C兩點(diǎn),且|$\overrightarrow{A{B_2}}$|=2|$\overrightarrow{B{B_2}}$|.直線l1過(guò)點(diǎn)B1且垂直于y軸,線段AB的中點(diǎn)M到直線l1的距離為$\frac{9}{4}$.設(shè)$\overrightarrow{CB}$=λ$\overrightarrow{B{B_2}}$,則實(shí)數(shù)λ的取值范圍是(  )
A.(0,3)B.(-$\frac{1}{2}$,2)C.(-$\frac{2}{3}$,4)D.(-$\frac{5}{9}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.為了了解某學(xué)校1200名高中男生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況.根據(jù)所得數(shù)據(jù)畫(huà)出樣本的頻率分布直方圖,據(jù)此估計(jì)該校高中男生體重在66~79g的人數(shù)為(  )
A.360B.336C.300D.280

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知長(zhǎng)方形ABCD中,AB=2,AD=1,M為DC的中點(diǎn). 將△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求證:AD⊥BM;
(Ⅱ)若$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{DB}$時(shí),求三棱錐D-AEM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某公司試銷(xiāo)一種成本單價(jià)為500元/件的新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià),又不高于800元/件.經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(如圖所示).
(1)由圖象,求函數(shù)y=kx+b的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))為S元.試用銷(xiāo)售單價(jià)x表示毛利潤(rùn)S,并求銷(xiāo)售單價(jià)定為多少時(shí),該公司獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷(xiāo)售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.有一個(gè)公用電話亭,里面有一部電話,在觀察使用這部電話的人的流量時(shí),設(shè)在某一時(shí)刻,有n個(gè)人正在使用電話或等待使用的概率為P(n),且P(n)與時(shí)刻t無(wú)關(guān),統(tǒng)計(jì)得到P(n)=$\left\{\begin{array}{l}{(\frac{1}{2})^{n}•P(0),1≤n≤6}\\{0,n≥7}\end{array}\right.$,那么在某一時(shí)刻,這個(gè)公用電話亭里一個(gè)人也沒(méi)有的概率P(0)的值是$\frac{64}{127}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知冪函數(shù)f(x)=xn的圖象過(guò)點(diǎn)(8,$\frac{1}{4}$),且f(a+1)<f(2),則a的范圍是(  )
A.-3<a<1B.a<-3或a>1C.a<1D.a>1

查看答案和解析>>

同步練習(xí)冊(cè)答案