已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)經(jīng)過點P(
3
2
,1),離心率e=
3
2
,直線l與橢圓交于A(x1,y1),B(x2,y2)兩點,向量
m
=(ax1,by1),
n
=(ax2,by2),且
m
n

(Ⅰ)求橢圓的方程;
(Ⅱ)當直線l過橢圓的焦點F(0,c)(c為半焦距)時,求直線l的斜率k.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)由已知條件得
e=
c
a
=
a2-b2
a
=
3
2
1
a2
+
3
4b2
=1
,由此能求出橢圓的方程.
(Ⅱ)設l的方程為y=kx+
3
,由
y=kx+
3
y2
4
+x2=1
⇒(k2+4)x2+2
3
kx-1=0
,由此利用韋達定理、向量垂直結合已知條件能求出直線l的斜率k.
解答: 解:(Ⅰ)∵由已知條件得
e=
c
a
=
a2-b2
a
=
3
2
1
a2
+
3
4b2
=1
,
解得a=2,b=1
∴橢圓的方程為
y2
4
+x2=1
(5分)
(Ⅱ)依題意,設l的方程為y=kx+
3

由 
y=kx+
3
y2
4
+x2=1
⇒(k2+4)x2+2
3
kx-1=0
,
△>0,(8分)x1+x2=
-2
3
k
k2+4
,x1x2=
-1
k2+4
,
由已知
m
n
.得:
a2x1x2+b2y1y2=4x1x2+(kx1+
3
)(kx2+
3
)

=(4+k2)x1x2+
3
k(x1+x2)+3
(12分)
=(k2+4)(-
1
k2+4
)+
3
k•
-2
3
k
k2+4
+3=0
,
解得k=±
2
(13分)
點評:本題考查橢圓的方程的求法,考查直線的斜率的求法,解題時要認真審題,注意橢圓弦長公式的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=log2[2x2-(a-3)x-a2+3a-2]在(-∞,-1]上為減函數(shù),則常數(shù)a的取值范圍是( 。
A、a≥-1B、1<a<3
C、a>-1D、a>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下命題:
①如果向量
a
,
b
與任何向量不能構成空間的一個基底,那么
a
b
的關系是不共線;
②O,A,B,C為空間四點,且向量
OA
,
OB
,
OC
不構成空間的一個基底,那么點O,A,B,C一定共面;
③若向量
p
空間的一個單位正交基底
a
,
b
,
c
下的坐標為(1,2,3),那么向量
p
在基底
a
+
b
a
-
b
,
c
下的坐標為(
3
2
,-
1
2
,3).
④若A,B,C三點不共線,O是平面ABC外一點,
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC
,則點M一定在平面ABC上,且在△ABC的內(nèi)部.
其中正確的命題是(  )
A、①②B、①③④
C、②③④D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、12
B、16
C、24+4
5
D、8+
8
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,P是△ABC所在的平面內(nèi)一點,且滿足
BA
+
BC
=
2
3
BP
,D,E是BP的三等分點,則( 。
A、
BA
=
EC
B、
BA
+
BC
=
DP
C、
PA
+
PC
=4
BD
D、
PA
-
PC
=
BC
-
BA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

討論方程-|-x+3|+2=a根的情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知橢圓C1
x2
a2
+
y2
b2
=1的一個頂點坐標為A(
2
,0),且拋物線y=
1
4
x2的焦點是橢圓C1的另一個頂點.
(l)求橢圓C1的方程;
(2)①若直線l:y=kx+m同時與橢圓C1和曲線C2:x2+y2=
4
3
相切,求直線l的方程.
②若直線l:y=kx+m與橢圓C1交于M,N,且直線OM的斜率是kOM與直線ON的斜率kON滿足kOM+kON=4k(k≠0),求證:m2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學對高二甲、乙兩個同類班級進行加強語文閱讀理解訓練對提高數(shù)學應用題得分率作用的試驗,其中甲班為實驗班(常規(guī)教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數(shù)學應用題上的得分率基本一致,試驗結束后,統(tǒng)計幾次數(shù)學應用試題測試的平均成績(均取整數(shù))如表所示:
60分以下61-70分71-80分81-90分91-100分
甲班(人數(shù))36111812
乙班(人數(shù))39131510
現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)試分析估計兩個班級的優(yōu)秀率;
(2)由以上統(tǒng)計列出2×2列聯(lián)表.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知角α的終邊在第二象限,且與單位圓交于點P(m,
15
4
).
(Ⅰ)求實數(shù)m的值;
(Ⅱ)求
sin(α+
π
4
)
sin(π+2α)-sin(
2
-2α)+1
的值.

查看答案和解析>>

同步練習冊答案