【題目】函數(shù)f(x)= 的定義域為集合A,函數(shù)g(x)=x﹣a(0<x<4)的值域為集合B. (Ⅰ)求集合A,B;
(Ⅱ)若集合A,B滿足A∩B=B,求實數(shù)a的取值范圍.

【答案】解:(Ⅰ)∵函數(shù)f(x)= 的定義域為集合A,

函數(shù)g(x)=x﹣a(0<x<4)的值域為集合B,

∴A={x|x2﹣2x﹣3≥0}={x|x≤﹣1或x≥3},

B={y|﹣a<y<4﹣a}.

(Ⅱ)∵集合A,B滿足A∩B=B,∴BA,

∴4﹣a≤﹣1或﹣a≥3,

解得a≥5或a≤﹣3.

∴實數(shù)a的取值范圍(﹣∞,﹣3]∪[5,+∞)


【解析】(Ⅰ)利用函數(shù)的定義域和值域能求出集合A和B.(Ⅱ)由集合A,B滿足A∩B=B,知BA,由此能求出實數(shù)a的取值范圍.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的定義域及其求法的相關(guān)知識,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x∈R,使得x+ <2,命題q:x∈R,x2+x+1>0,下列命題為真的是(
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a∈R). (Ⅰ)當(dāng) 時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若 對任意的x>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)a的值及an;
(3)對于(2)中的an , 記f(n)=λa2n+1﹣4λan+1﹣3,若f(n)<0對任意的正整數(shù)n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)|x+a|(a∈R)
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[﹣2,2]時,函數(shù)f(x)的最大值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 =1(a>b>0)的離心率為 ,右焦點到直線x+y+ =0的距離為2 . (Ⅰ) 求橢圓的方程;
(Ⅱ) 過點M(0,﹣1)作直線l交橢圓于A,B兩點,交x軸于N點,滿足 =﹣ ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=|sinx+cosx|+|sinx﹣cosx|是(
A.最小正周期為π的奇函數(shù)
B.最小正周期為π的偶函數(shù)
C.最小正周期為 的奇函數(shù)
D.最小正周期為 的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).
(1)若a=﹣1,求方程f(x)=1的解集;
(2)若 ,試判斷函數(shù)y=f(x)在R上的零點個數(shù),并求此時y=f(x)所有零點之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是棱AB、BC的中點,則平面A1DE與平面C1DF所成二面角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案