【題目】某射手射擊1次,擊中目標的概率是0.9,他連續(xù)射擊4次,且他各次射擊是否擊中目標相互之間沒有影響.有下列結(jié)論:
①他第3次擊中目標的概率是0.9; ②他恰好擊中目標3次的概率是0.93×0.1;
③他至少擊中目標1次的概率是1-0.14 ④他恰好有連續(xù)2次擊中目標的概率為3×0.93×0.1
其中正確結(jié)論的序號是______
【答案】①③
【解析】分析:由題意知射擊一次擊中目標的概率是0.9,得到第3次擊中目標的概率是0.9,連續(xù)射擊4次,且他各次射擊是否擊中目標相互之間沒有影響,得到是一個獨立重復試驗,根據(jù)獨立重復試驗的公式即可得到結(jié)果.
詳解:射擊一次擊中目標的概率是0.9,
第3次擊中目標的概率是0.9,
①正確;
連續(xù)射擊4次,且各次射擊是否擊中目標相互之間沒有影響,
本題是一個獨立重復試驗,
根據(jù)獨立重復試驗的公式得到恰好擊中目標3次的概率是,
②不正確;
至少擊中目標1次的概率是1-0.14
③正確;
恰好有連續(xù)2次擊中目標的概率為,
④不正確.
故答案為:①③.
科目:高中數(shù)學 來源: 題型:
【題目】求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研課題組通過一款手機APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點
(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】保險公司統(tǒng)計的資料表明:居民住宅距最近消防站的距離(單位:千米)和火災(zāi)所造成的損失數(shù)額(單位:千元)有如下的統(tǒng)計資料:
(1)請用相關(guān)系數(shù)(精確到0.01)說明與之間具有線性相關(guān)關(guān)系;
(2)求關(guān)于的線性回歸方程(精確到0.01);
(3)若發(fā)生火災(zāi)的某居民區(qū)距最近的消防站10.0千米,請評估一下火災(zāi)損失(精確到0.01).
參考數(shù)據(jù):,,,
,
參考公式:
回歸直線方程為,其中,,為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市組織了一次高二調(diào)研考試,考試后統(tǒng)計的數(shù)學成績服從正態(tài)分布,其密度函數(shù), x∈(-∞,+∞),則下列命題不正確的是( )
A. 該市這次考試的數(shù)學平均成績?yōu)?/span>80分
B. 分數(shù)在120分以上的人數(shù)與分數(shù)在60分以下的人數(shù)相同
C. 分數(shù)在110分以上的人數(shù)與分數(shù)在50分以下的人數(shù)相同
D. 該市這次考試的數(shù)學成績標準差為10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一元二次函數(shù)的最大值為,其圖象的對稱軸為,且與軸兩個交點的橫坐標的平方和為.
(1)求該一元二次函數(shù);
(2)要將該函數(shù)圖象的頂點平移到原點,請說出平移的方式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一元二次函數(shù).
(1)寫出該函數(shù)的頂點坐標;
(2)如果該函數(shù)在區(qū)間上的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線C的方程為 ,點 ,以極點為原點,極軸為x軸的正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(1)求曲線C的直角坐標方程及點R的直角坐標;
(2)設(shè)P為曲線C上一動點,以PR為對角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長的最小值及此時點P的直角坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com