已知y與x之間具有很強(qiáng)的線性相關(guān)關(guān)系,現(xiàn)觀測(cè)得到(x,y)的四組觀測(cè)值并制作了如下的對(duì)照表,由表中數(shù)據(jù)粗略地得到線性回歸直線方程為
y
=
b
x+60,其中
b
的值沒(méi)有寫(xiě)上.當(dāng)x等于-5時(shí),預(yù)測(cè)y的值為
 
x 18 13 10 -1
y 24 34 38 64
考點(diǎn):線性回歸方程
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:樣本點(diǎn)的中心為(10,40),代入回歸直線方程,求出
b
,再由x等于-5時(shí),預(yù)測(cè)y的值.
解答: 解:由題意,
.
x
=
1
4
(18+13+10-1)=10,
.
y
=
1
4
(24+34+38+64)=40,
∵線性回歸直線方程為
y
=
b
x+60,
∵40=10
b
+60,
b
=-2,
∴x等于-5時(shí),預(yù)測(cè)y的值為(-2)×(-5)+60=70.
故答案為:70.
點(diǎn)評(píng):本題考查回歸方程的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,角A、B、C對(duì)邊分別是a、b、c,滿(mǎn)足6
AB
AC
=(b+c)2-a2
(Ⅰ)求角A的大;
(Ⅱ)若函數(shù)f(x)=cos2(x+
A
2
)-sin2(x-
A
2
)+
3
2
sin2x,x∈[0,
π
2
],求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x-m)7=a0+a1x+a2x2+…+a7x7的展開(kāi)式中x3的系數(shù)是35,則a1+a2+a3+…+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若任意實(shí)數(shù)x使m≥|x+2|-|5-x|恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:2x2-7x+3≤0,q:|x-a|≤1,若p是q的必要不充分條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列程序框圖輸出的結(jié)果 x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log2x(x>0)
3x(x≤0)
,且程序框如圖所示,若輸入x的值為7時(shí),輸出y的值為a,則f[f(a)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微”,事實(shí)上,有很多代數(shù)問(wèn)題可以轉(zhuǎn)化為幾何問(wèn)題加以解決.如:與
(x-a)2+(y-b)2
相關(guān)的代數(shù)問(wèn)題可以考慮轉(zhuǎn)化為點(diǎn)A(x,y)與點(diǎn)B(a,b)之間距離的幾何問(wèn)題.結(jié)合上述觀點(diǎn),可得方程:|
x2+8x+20
-
x2-8x+20
|=4的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則此幾何體的表面積為( 。
A、23
B、
23
2
C、
43
2
D、16

查看答案和解析>>

同步練習(xí)冊(cè)答案