【題目】如圖,,是經(jīng)過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經(jīng)過小城修建公路(,分別在上),與,圍成三角形區(qū)域.

(1)設(shè),,求三角形區(qū)域周長的函數(shù)解析式;

(2)現(xiàn)計劃開發(fā)周長最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.

【答案】(1)

(2)開發(fā)區(qū)域的面積為

【解析】分析:(1)先根據(jù)直角三角形求OA,OB,AB,再相加得三角形區(qū)域周長的函數(shù)解析式; (2),化簡,再根據(jù)三角函數(shù)有界性確定t范圍,解得最小值,同時求出開發(fā)區(qū)域的面積.

詳解:解:(方法一)

(1)如圖,過分別作、的垂線,垂足分別為、,因為小城位于小城的東北方向,且,所以,在中,易得,

,

所以

當(dāng)時,,單調(diào)遞減

當(dāng)時,,單調(diào)遞增

所以時,取得最小值.

此時,,

的面積

答:開發(fā)區(qū)域的面積為

(方法二)

(1)在中,,即

所以

中,

所以

(2)令,則

因為,所以,所以

,得

因為上單調(diào)遞減,所以當(dāng)最小

此時,即

,

所以的面積

答:開發(fā)區(qū)域的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為菱形,,平面,分別是的中點。

(1)證明:

(2)若上的動點,與平面所成最大角的正切值為,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)參加一項射擊比賽游戲,其中任何一人每射擊一次擊中目標(biāo)得2分,未擊中目標(biāo)得0分.若甲、乙兩人射擊的命中率分別為 和P,且甲、乙兩人各射擊一次得分之和為2的概率為 .假設(shè)甲、乙兩人射擊互不影響,則P值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為R,且f(2)=2,又函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,若兩個正數(shù)a、b滿足f(2a+b)<2,則 的取值范圍是(
A.( ,2)
B.(﹣∞, )∪(2,+∞)
C.(2,+∞)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為(
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示(其中是定義域為的函數(shù)的導(dǎo)函數(shù)),則以下說法錯誤的是( ).

A.

B. 當(dāng)時,函數(shù)取得極大值

C. 方程均有三個實數(shù)根

D. 當(dāng)時,函數(shù)取得極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù),為常數(shù)).

若函數(shù),在區(qū)間上單調(diào)遞減,求的取值范圍.

當(dāng)時,判斷函數(shù)上是否有零點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中的導(dǎo)函數(shù).

(1)令,,,求的表達(dá)式;

(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】辦公室裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個員工任意選擇2種,則員工甲和乙選擇的植物全不同的概率為:

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案