函數(shù)y=sin(2x-
π4
)
的單調(diào)遞減區(qū)間是
 
分析:先根據(jù)正弦函數(shù)的單調(diào)性求得函數(shù)y的單調(diào)遞減時(shí)2x-
π
4
的范圍,進(jìn)而求得x的范圍得到了函數(shù)的單調(diào)遞減區(qū)間.
解答:解:由正弦函數(shù)的單調(diào)性可知y=sin(2x-
π
4
)的單調(diào)減區(qū)間為2kπ+
π
2
≤2x-
π
4
≤2kπ+
2

即kπ+
3
8
π≤x≤kπ+
7
8
π(k∈Z)
故答案為[kπ+
8
,kπ+
8
]
點(diǎn)評:本題主要考查了正弦函數(shù)的單調(diào)性.考查了學(xué)生對正弦函數(shù)基本性質(zhì)的理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin(2x+
π
6
)
的圖象,只需把函數(shù)y=sin2x的圖象( 。
A、向左平移
π
6
個長度單位
B、向右平移
π
6
個長度單位
C、向右平移
π
3
個長度單位
D、向左平移
π
12
個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)給出下列四個命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個零點(diǎn);
③函數(shù)y=sin(2x-
π
3
)
的一個單調(diào)增區(qū)間是[-
π
12
,
12
]

④對于任意實(shí)數(shù)x,有f(-x)=f(x),且當(dāng)x>0時(shí),f′(x)>0,則當(dāng)x<0時(shí),f′(x)<0.
其中真命題的序號是
①③④
①③④
(把所有真命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x+
π
3
)
的圖象上的所有點(diǎn)向右平移
π
6
個單位,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?span id="i8zcqnr" class="MathJye">
1
2
倍(縱坐標(biāo)不變),則所得的圖象的函數(shù)解析式為
y=sin4x
y=sin4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)函數(shù)y=sin(2x+
π
3
)
的圖象可由y=cos2x的圖象經(jīng)過怎樣的變換得到( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=sin(2x+
3
)
的圖象,只需把函數(shù)y=sin2x的圖象上所有的點(diǎn)向左平移
π
3
π
3
個單位長度.

查看答案和解析>>

同步練習(xí)冊答案