(理科題)(本小題12分)
已知數(shù)列{an}是等差數(shù)列,a2=3,a5=6,數(shù)列{bn}的前n項(xiàng)和是Tn,且Tn+bn=1.
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)的和;
(2)求數(shù)列{bn}的通項(xiàng)公式.
(1)∴an=2+(n-1)=n+1.Sn=na1+d=. (2)證明:見解析。
【解析】
試題分析:(1)設(shè){an}的公差為d,進(jìn)而根據(jù)等差數(shù)列通項(xiàng)公式表示出a2和a5,求得a1和d,則數(shù)列的通項(xiàng)公式和求和公式可得.
(2)根據(jù)Tn-Tn-1=bn,整理得,判斷出{bn}是等比數(shù)列.進(jìn)而求得b1,利用等比數(shù)列的通項(xiàng)公式求得答案..
(1)設(shè){an}的公差為d,則:a2=a1+d,a5=a1+4d.
……………2分
∴a1=2,d=1 ……………3分
∴an=2+(n-1)=n+1.…………4分
Sn=na1+d=.………………6分
(2)證明:當(dāng)n=1時(shí),b1=T1,
由T1+b1=1,得b1=. ………8分
當(dāng)n≥2時(shí),∵Tn=1-bn,Tn-1=1-bn-1,
∴Tn-Tn-1= (bn-1-bn),……………10分
即bn= (bn-1-bn).
∴bn=bn-1. …………11分
∴{bn}是以為首項(xiàng),為公比的等比數(shù)列.∴bn=·()n-1=.……………12分
考點(diǎn):等差數(shù)列的通項(xiàng)公式;考查了等差數(shù)列的性質(zhì)和等比數(shù)列的判定,等差數(shù)列的前n項(xiàng)和;等比數(shù)列的通項(xiàng)公式.
點(diǎn)評(píng):先求出等差數(shù)列的前n項(xiàng)和Sn,然后就可以求出Tn,再利用可求{bn}
的通項(xiàng)公式。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
定義在區(qū)間(0,)上的函f(x)滿足:(1)f(x)不恒為零;(2)對(duì)任何實(shí)數(shù)x、q,都有.
(1)求證:方程f(x)=0有且只有一個(gè)實(shí)根;
(2)若a>b>c>1,且a、b、c成等差數(shù)列,求證:;
(3)(本小題只理科做)若f(x) 單調(diào)遞增,且m>n>0時(shí),有,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省南京六中高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建福州文博中學(xué)高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(理科題)(本小題12分)
某房產(chǎn)開發(fā)商投資81萬元建一座寫字樓,第一年裝修費(fèi)為1萬元,以后每年增加2萬元,把寫字樓出租,每年收入租金30萬元。
(1)若扣除投資和各種裝修費(fèi),則從第幾年開始獲取純利潤?
(2)若干年后開發(fā)商為了投資其他項(xiàng)目,有兩種處理方案①年平均利潤最大時(shí)以46萬元出售該樓;
②純利潤總和最大時(shí),以10萬元出售樓,問選擇哪種方案盈利更多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com