已知橢圓過(guò)點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)且斜率為()的直線(xiàn)與橢圓相交于兩點(diǎn),直線(xiàn)、分別交直線(xiàn) 于、兩點(diǎn),線(xiàn)段的中點(diǎn)為.記直線(xiàn)的斜率為,求證: 為定值.
(Ⅰ);(Ⅱ)
解析試題分析:(Ⅰ)根據(jù)條件可得以下方程組: ,解這個(gè)方程組求出、的值便得橢圓的方程;(Ⅱ)將用表示出來(lái),這樣就是一個(gè)只含的式子,將該式化簡(jiǎn)即可.那么如何用來(lái)表示?
設(shè),.因?yàn)锳(2,0),所以直線(xiàn)的方程分別為:.
令得:所以的中點(diǎn)為:
由此得直線(xiàn)的斜率為:
①
再設(shè)直線(xiàn)的方程為,代入橢圓方程得:
設(shè),,則由韋達(dá)定理得:代入①式,便可將用
表示出來(lái),從而得到的值.
試題解析:(Ⅰ)由題設(shè): ,解之得,所以橢圓的方程為 4分
(Ⅱ)設(shè)直線(xiàn)的方程為代入橢圓方程得:
設(shè),,則由韋達(dá)定理得:
直線(xiàn)的方程分別為:
令,得:所以
13分
考點(diǎn):1、橢圓及其方程;2、直線(xiàn)的方程;3、中點(diǎn)坐標(biāo)公式;4、根與系數(shù)的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線(xiàn):和⊙:,過(guò)拋物線(xiàn)上一點(diǎn)作兩條直線(xiàn)與⊙相切于、兩點(diǎn),分別交拋物線(xiàn)為E、F兩點(diǎn),圓心點(diǎn)到拋物線(xiàn)準(zhǔn)線(xiàn)的距離為.
(1)求拋物線(xiàn)的方程;
(2)當(dāng)的角平分線(xiàn)垂直軸時(shí),求直線(xiàn)的斜率;
(3)若直線(xiàn)在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知圓和圓.
(1)若直線(xiàn)過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,求直線(xiàn)的方程;
(2)設(shè)為平面上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)的無(wú)窮多對(duì)互相垂直的直線(xiàn)和,它們分別與圓和圓相交,且直線(xiàn)被圓截得的弦長(zhǎng)與直線(xiàn)被圓截得的弦長(zhǎng)相等,試求所有滿(mǎn)足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),以F1,F2為焦點(diǎn)的橢圓C過(guò)點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn),過(guò)點(diǎn)F2作直線(xiàn)與橢圓C交于A,B兩點(diǎn),且,若的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,若右焦點(diǎn)到直線(xiàn)的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)與橢圓相交于不同的兩點(diǎn)、,當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,且.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)且斜率不為0的直線(xiàn)交橢圓于兩點(diǎn).試問(wèn)軸上是否存在異于的定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知經(jīng)過(guò)點(diǎn)A(-4,0)的動(dòng)直線(xiàn)l與拋物線(xiàn)G:相交于B、C,當(dāng)直線(xiàn)l的斜率是時(shí),.
(Ⅰ)求拋物線(xiàn)G的方程;
(Ⅱ)設(shè)線(xiàn)段BC的垂直平分線(xiàn)在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn) 關(guān)于點(diǎn)對(duì)稱(chēng).
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)若橢圓上存在點(diǎn),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F的直線(xiàn)l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有=+成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com