8.已知cos(x-$\frac{π}{4}$)=-$\frac{1}{3}$($\frac{5π}{4}$<x<$\frac{7π}{4}$),則sinx-cos2x=( 。
A.$\frac{5\sqrt{2}-12}{18}$B.$\frac{-4\sqrt{2}-7}{9}$C.$\frac{4-7\sqrt{2}}{9}$D.$\frac{-4-7\sqrt{2}}{9}$

分析 根據(jù)同角的三角函數(shù)的關(guān)系和二倍角公式計(jì)算即可.

解答 解:∵cos(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx=-$\frac{1}{3}$,
∴cosx+sinx=-$\frac{\sqrt{2}}{3}$,
∵sin2x+cos2x=1,$\frac{5π}{4}$<x<$\frac{7π}{4}$,
∴sinx=$\frac{-\sqrt{2}-4}{6}$,
∴sinx-cos2x=sinx-1+2sin2x=$\frac{-\sqrt{2}-4}{6}$-1+2($\frac{-\sqrt{2}-4}{6}$)2=$\frac{5\sqrt{2}-12}{18}$,
故選:A.

點(diǎn)評(píng) 本題考查了同角的三角函數(shù)的關(guān)系和二倍角公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)的定義域是(0,+∞),f'(x)是f(x)的導(dǎo)數(shù),且滿足f(x)>f'(x),則不等式ex+2•f(x2-x)>ex2•f(2)的解集是(-1,0)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合M={1,2},N={a2},則“a=1”是“N是M的子集”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在正方體ABCD-A1B1C1D1中,E、F分別是線段BC、CD1的中點(diǎn).
(1)求異面直線EF與AA1所成角的大小
(2)求直線EF與平面AA1B1B所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$ax2+(2a2+a-1)x+3,(a∈R)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若關(guān)于x的方程x2-x-(m+1)=0在[-1,1]上有解,則m的取值范圍是[-$\frac{5}{4}$,1].(結(jié)果寫成區(qū)間形式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列選項(xiàng)中表述正確的是( 。
A.空間中任意三點(diǎn)確定一個(gè)平面
B.直線上的兩點(diǎn)和直線外的一點(diǎn)可以確定一個(gè)平面
C.分別在三條不同的直線上的三點(diǎn)確定一個(gè)平面
D.不共線的四點(diǎn)確定一個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在四棱錐E-ABCD中,底面ABCD是邊長為2的正方形,△BCE為等邊三角形,平面ABCD⊥平面BCE,F(xiàn)為CD上的動(dòng)點(diǎn),當(dāng)AF+EF最小時(shí),四棱錐E-ABCD與三棱錐F-ABE的外接球的半徑之比為2$\sqrt{7}$:5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實(shí)數(shù)a>0,b>0,且滿足2a+3b=6,則$\frac{2}{a}$+$\frac{3}$的最小值是( 。
A.$\frac{8}{3}$B.$\frac{11}{3}$C.$\frac{25}{6}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案