分析 (1)利用二倍角公式與差角公式化簡f(x),根據(jù)周期公式得出ω;
(2)求出f(x)的最值,得出4-f(x)和-4-f(x)的最值,從而得出k的范圍.
解答 解:(1)f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx=$\frac{\sqrt{3}}{2}$sin 2ωx-$\frac{1+cos2ωx}{2}$=sin(2ωx-$\frac{π}{6}$)-$\frac{1}{2}$.
因?yàn)閒(x)的最小正周期為π,則$\frac{2π}{|2ω|}$=π,即|ω|=1.
又ω<0,所以ω=-1.
(2)由|k+f(x)|<4得,-4<k+f(x)<4,即-4-f(x)<k<4-f(x).
據(jù)題意,當(dāng)x∈[0,$\frac{π}{2}$]時(shí),[-4-f(x)]max<k<[4-f(x)]min
因?yàn)棣?-1,
則f(x)=sin(-2x-$\frac{π}{6}$)-$\frac{1}{2}$=-sin(2x+$\frac{π}{6}$)-$\frac{1}{2}$.
當(dāng)x∈[0,$\frac{π}{2}$]時(shí),2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴f(x)max=0,f(x)min=-$\frac{3}{2}$.
∴[-4-f(x)]max=-4+$\frac{3}{2}$=-$\frac{5}{2}$,[4-f(x)]min=4,
故k的取值范圍是(-$\frac{5}{2}$,4).
點(diǎn)評(píng) 本題考查了三角恒等變換,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6}{25}$ | B. | $-\frac{24}{25}$ | C. | $-\frac{12}{25}$ | D. | $-\frac{6}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{5}$ | B. | $\frac{2π}{5}$ | C. | $\frac{4π}{5}$ | D. | $\frac{6π}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z) | B. | (kπ-$\frac{π}{2}$,kπ)((k∈Z) | C. | (kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)((k∈Z) | D. | (kπ,kπ+$\frac{π}{2}$)((k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 4 | C. | 5 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com