1.已知sinx=$\frac{\sqrt{2}}{4}$,x∈(-$\frac{3π}{2}$,-π),則x的值為(  )
A.-π+arcsin$\frac{\sqrt{2}}{4}$B.-π-arcsin$\frac{\sqrt{2}}{4}$C.-$\frac{3π}{2}$+arcsin$\frac{\sqrt{2}}{4}$D.-2π+arcsin$\frac{\sqrt{2}}{4}$

分析 反正弦函數(shù)的定義很性質(zhì),誘導(dǎo)公式可得 x+π=arcsin(-$\frac{\sqrt{2}}{4}$),由此求得x的值.

解答 解:∵sinx=$\frac{\sqrt{2}}{4}$,x∈(-$\frac{3π}{2}$,-π),∴sin(x+π)=-$\frac{\sqrt{2}}{4}$,x+π∈(-$\frac{π}{2}$,0),
∴x+π=arcsin(-$\frac{\sqrt{2}}{4}$)=-arcsin$\frac{\sqrt{2}}{4}$,∴x=π-arcsin$\frac{\sqrt{2}}{4}$,
故選:B.

點評 本題主要考查反正弦函數(shù)的定義很性質(zhì),誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.不等式(x+2)3(x+3)4(x-1)<0的解集是( 。
A.-2<x<1B.-3<x<1C.-3<x<-2D.x>1或x<-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知A,B,C,D為圓O上的四點,直線PA切圓O于點A,PA∥BD,AC與BD相交于G點.
(1)求證:點A為劣弧$\widehat{BD}$的中點.
(2)若AC=6,AB=3,BC=4,求BG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知f(x)=$\frac{1}{3}$x${\;}^{3}+\frac{1}{2}$(b-1)x2+cx(b,c為常數(shù)),若f(x)在x=1和x=3處取得極值,則b=5,c=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,四邊形ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,E為PC的中點.
(Ⅰ)證明:平面BED⊥平面ABCD;
(Ⅱ)若∠BED=90°,AB=2,求三棱錐E-BDP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若直線y=kx+b(b<0)是曲線y=ex-2的切線,也是曲線y=lnx的切線,則b=-1 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,四棱錐P-ABCD中,∠ABC=∠BAD=90°,BC=2AD=2,△PAB與△PAD都是等邊三角形.
(Ⅰ)證明:CD⊥平面PBD;
(Ⅱ)求P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.E是PD上一點.
(1)若PB∥平面ACE,求$\frac{PE}{ED}$的值;
(2)若E是PD中點,過點E作平面α∥平面PBC,平面α與棱PA交于F,求三棱錐P-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)數(shù)列{an}是首項為0的遞增數(shù)列,函數(shù)fn(x)=|sin$\frac{1}{n}$(x-an)|,x∈[an,an-1]滿足:對于任意的實數(shù)m∈[0,1),fn(x)=m總有兩個不同的根,則{an}的通項公式是an=$\frac{n\;(n-1)\;π}{2}$.

查看答案和解析>>

同步練習冊答案