已知橢圓的左、右焦點(diǎn)為F1、F2,過點(diǎn)F1斜率為正數(shù)的直線交Γ與A、B兩點(diǎn),且AB⊥AF2,|AF2|、|AB|、|BF2|成等差數(shù)列.
(Ⅰ)求Γ的離心率;
(Ⅱ)若直線y=kx(k<0)與Γ交于C、D兩點(diǎn),求使四邊形ABCD面積S最大時(shí)k的值.
【答案】分析:(Ⅰ)根據(jù)橢圓定義及已知條件,有|AF2|+|AB|+|BF2|=4a,|AF2|+|BF2|=2|AB|,|AF2|2+|AB|2=|BF2|2,由此能求出橢圓Γ的離心率.
(Ⅱ)由(Ⅰ),Γ的方程為x2+2y2=a2.,設(shè)C(x1,y1)、D(x2,y2)(x1<x2),則C、D坐標(biāo)滿足,由此得x1=-,x2=.由此能求出求使四邊形ABCD面積S最大時(shí)k的值.
解答:解:(Ⅰ)根據(jù)橢圓定義及已知條件,有
|AF2|+|AB|+|BF2|=4a,①
|AF2|+|BF2|=2|AB|,②
|AF2|2+|AB|2=|BF2|2,③…(3分)
由①、②、③,解得|AF2|=a,|AB|=a,|BF2|=a,
所以點(diǎn)A為短軸端點(diǎn),b=c=a,
Γ的離心率e==.…(5分)
(Ⅱ)由(Ⅰ),Γ的方程為x2+2y2=a2
不妨設(shè)C(x1,y1)、D(x2,y2)(x1<x2),
則C、D坐標(biāo)滿足,
由此得x1=-,x2=
設(shè)C、D兩點(diǎn)到直線AB:x-y+a=0的距離分別為d1、d2,
因C、D兩點(diǎn)在直線AB的異側(cè),則
d1+d2=
=
=.…(8分)
∴S=|AB|( d1+d2
=a•
=
設(shè)t=1-k,則t>1,
=,
當(dāng)=,即k=-時(shí),最大,進(jìn)而S有最大值.…(12分)
點(diǎn)評(píng):通過幾何量的轉(zhuǎn)化考查用待定系數(shù)法求曲線方程的能力,通過直線與圓錐曲線的位置關(guān)系處理,考查學(xué)生的運(yùn)算能力.通過向量與幾何問題的綜合,考查學(xué)生分析轉(zhuǎn)化問題的能力,探究研究問題的能力,并體現(xiàn)了合理消元,設(shè)而不解的代數(shù)變形的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過點(diǎn)P(1,
3
2
)
.M為橢圓上的動(dòng)點(diǎn),以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若圓M與y軸有兩個(gè)交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn) 軸上方),使為等腰三角形.

⑴求離心率的范圍;

    ⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)分別作直線交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,且,證明:直線過定點(diǎn)().

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)     已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中

F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

(I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

已知橢圓的左、右焦點(diǎn)分別為、,離心率,右準(zhǔn)線方程為

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)過點(diǎn)的直線與該橢圓交于M、N兩點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案