【題目】如圖所示,沿河有、兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放,兩城鎮(zhèn)可以單獨(dú)建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經(jīng)驗(yàn)公式,建廠的費(fèi)用為(萬元),表示污水流量,鋪設(shè)管道的費(fèi)用(包括管道費(fèi))(萬元),表示輸送污水管道的長度(千米).已知城鎮(zhèn)和城鎮(zhèn)的污水流量分別為,,、兩城鎮(zhèn)連接污水處理廠的管道總長為20千米;假定:經(jīng)管道運(yùn)輸?shù)奈鬯髁坎话l(fā)生改變,污水經(jīng)處理后直接排入河中;請解答下列問題:
(1)若在城鎮(zhèn)和城鎮(zhèn)單獨(dú)建廠,共需多少總費(fèi)用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)到擬建廠的距離為千米,求聯(lián)合建廠的總費(fèi)用與的函數(shù)關(guān)系式,并求的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面是等腰梯形,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.
(1)證明:平面平面.
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)令求函數(shù)的極值.
(3)若,正實(shí)數(shù)滿足,
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,a3+a5=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,若{bn}的前n項(xiàng)和為Tn,證明:Tn<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)證明:平面;
(2)設(shè)點(diǎn)在線段上運(yùn)動(dòng),平面與平面所成銳二面角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列判斷正確的是( )
A.是的極大值點(diǎn)
B.函數(shù)有且只有1個(gè)零點(diǎn)
C.存在正實(shí)數(shù),使得恒成立
D.對(duì)任意兩個(gè)正實(shí)數(shù),,且,若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(a為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點(diǎn),l和C交于A,B兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,在中,是邊上的高,且,,是的中點(diǎn).現(xiàn)沿進(jìn)行翻折,使得平面平面,得到的圖形如圖(2)所示.
(1)求證:;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com