【題目】已知函數(shù).
(1)若對恒成立,求的取值集合;
(2)在函數(shù)的圖像上取定點,記直線AB的斜率為K,證明:存在,使恒成立;
【答案】(1);(2)見解析
【解析】
(1)對一切x>0,f(x)≤恒成立,即對一切x>0,恒成立,構(gòu)造新函數(shù),求出函數(shù)的最值,即可求得結(jié)論;
(2)要證明存在x0∈(x1,x2),使f′(x0)=k成立,只要證明f′(x)﹣k=0在(x1,x2)內(nèi)有解即可.
(1)解:對一切x>0,f(x)≤恒成立,
即對一切x>0,恒成立,
令,則
令g′(x)>0,可得0<x<;令g′(x)<0,可得x>,
∴x=時,g(x)取得最大值g()
∴;
令,,
在上單調(diào)遞減,在在上單調(diào)遞增,
∴,又,
∴
∴的取值集合;
(2)證明:由題意,k
要證明存在x0∈(x1,x2),使f′(x0)=k成立,只要證明f′(x)﹣k=0在(x1,x2)內(nèi)有解即可
令h(x)=f′(x)﹣k,只要證明h(x)在(x1,x2)內(nèi)存在零點即可
∵h(x)在(x1,x2)內(nèi)是減函數(shù),只要證明h(x1)>0,h(x2)<0
即證0,0
令F(t)=t﹣1﹣lnt(t>0),∵F′(t)=1,∴函數(shù)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增
∴函數(shù)在t=1時,取得最小值0,∴F(t)≥0
∵0且;0且1
∴0,0
∴結(jié)論成立.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,已知,頂點P在平面ABC上的射影為的外接圓圓心.
(1)證明:平面平面ABC;
(2)若點M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》中有如下問題:今有蒲生一日,長四尺,莞生一日,長一尺.蒲生日自半,莞生日自倍.意思是:今有蒲第一天長高四尺,莞第一天長高一尺,以后蒲每天長高前一天的一半,莞每天長高前一天的兩倍.請問第幾天,莞的長度是蒲的長度的4倍( )
A.4天B.5天C.6天D.7天
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“干支紀年法”是中國歷法上自古以來就一直使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按照干支順序相配,構(gòu)成了“干支紀年法”,其相配順序為:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60為一個周期,周而復(fù)始,循環(huán)記錄.按照“干支紀年法”,中華人民共和國成立的那年為己丑年,則2013年為( )
A.甲巳年B.壬辰年C.癸巳年D.辛卯年
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,扇形的半徑為,圓心角,點為弧上一點,平面且,點且,∥平面.
(1)求證:平面平面;
(2)求平面和平面所成二面角的正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給正有理數(shù)、(,,,且和不同時成立),按以下規(guī)則排列:① 若,則排在前面;② 若,且,則排在的前面,按此規(guī)則排列得到數(shù)列.
(例如:).
(1)依次寫出數(shù)列的前10項;
(2)對數(shù)列中小于1的各項,按以下規(guī)則排列:①各項不做化簡運算;②分母小的項排在前面;③分母相同的兩項,分子小的項排在前面,得到數(shù)列,求數(shù)列的前10項的和,前2019項的和;
(3)對數(shù)列中所有整數(shù)項,由小到大取前2019個互不相等的整數(shù)項構(gòu)成集合,的子集滿足:對任意的,有,求集合中元素個數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)擁有3條相同的生產(chǎn)線,每條生產(chǎn)線每月至多出現(xiàn)一次故障.各條生產(chǎn)線是否出現(xiàn)故障相互獨立,且出現(xiàn)故障的概率為.
(1)求該企業(yè)每月有且只有1條生產(chǎn)線出現(xiàn)故障的概率;
(2)為提高生產(chǎn)效益,該企業(yè)決定招聘名維修工人及時對出現(xiàn)故障的生產(chǎn)線進行維修.已知每名維修工人每月只有及時維修1條生產(chǎn)線的能力,且每月固定工資為1萬元.此外,統(tǒng)計表明,每月在不出故障的情況下,每條生產(chǎn)線創(chuàng)造12萬元的利潤;如果出現(xiàn)故障能及時維修,每條生產(chǎn)線創(chuàng)造8萬元的利潤;如果出現(xiàn)故障不能及時維修,該生產(chǎn)線將不創(chuàng)造利潤,以該企業(yè)每月實際獲利的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個?(實際獲利=生產(chǎn)線創(chuàng)造利潤-維修工人工資)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com