設(shè)A、B為在雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
上兩點(diǎn),O為坐標(biāo)原點(diǎn).若OA丄OB,則△AOB面 積的最小值為______.
設(shè)直線OA的方程為y=kx,則直線OB的方程為y=-
1
k
x,
則點(diǎn)A(x1,y1)滿足
y=kx
x2
a2
-
y2
b2
=1
x12=
a2b2
b2-a2k2
,y12=
k2a2b2
b2-a2k2

∴|OA|2=x12+y12=
(1+k2)a2b2
b2-a2k2
,同理|OB|2=
(1+k2)a2b2
k2b2-a2

故|OA|2•|OB|2=
(1+k2)a2b2
b2-a2k2
(1+k2)a2b2
k2b2-a2
=
(1+k2)2(a2b2)2
-a2b2+(a4+b4)k2-k4a2b2

k2
(k2+1)2
=
1
k2+
1
k2
+2
1
4
(當(dāng)且僅當(dāng)k=±1時(shí),取等號(hào))
∴|OA|2•|OB|2
4a4b4
(b2-a2)2
,又b>a>0,
故S△AOB=
1
2
|OA||OB|的最小值為
a2b2
b2-a2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長(zhǎng)F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②平面內(nèi)到兩定點(diǎn)距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓
③若方程
x2
4-t
+
y2
t-1
=1
表示焦點(diǎn)在x軸上的橢圓,則1<t<
5
2

④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1
有相同的焦點(diǎn).
其中真命題的序號(hào)為
③、④
③、④
(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省綏棱縣第一中學(xué)2011-2012學(xué)年高二上學(xué)期期末數(shù)學(xué)文科試題 題型:022

在下面幾個(gè)關(guān)于圓錐曲線命題中

①方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率

②設(shè)A、B為兩個(gè)定點(diǎn),K為非零常數(shù),若|PA|-|PB|=K,則動(dòng)點(diǎn)P的軌跡為雙曲線

③過拋物線焦點(diǎn)F的直線與拋物線相交于A、B兩點(diǎn),若A、B在拋物線的準(zhǔn)線上的射影分別為A1、B1,則∠A1FB1=90°

④雙曲線的漸近線與圓(x-3)2+y2=r2(r>0)相切,則

其中真命題序號(hào)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省徐州市邳州市運(yùn)河中學(xué)高二(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②平面內(nèi)到兩定點(diǎn)距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓
③若方程表示焦點(diǎn)在x軸上的橢圓,則1<t<
④雙曲線有相同的焦點(diǎn).
其中真命題的序號(hào)為    (寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省攀枝花七中高三(下)開學(xué)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長(zhǎng)F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量夾角為銳角θ,且滿足 ,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號(hào)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案