已知等差數(shù)列{an}滿足a4=5,a7=11.求數(shù)列{an}的通項.
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列通項公式求解.
解答: 解:∵等差數(shù)列{an}滿足a4=5,a7=11,
a1+3d=5
a1+6d=11
,解得
a1=-1
d=2

∴an=-1+(n-1)×2=2n-3.
點評:本題考查等差數(shù)列的通項公式的求法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)g(x)=
1
2
x2+1(x>0)
-
1
2
x2-1(x<0)
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,∠ABC=∠BAD=90°AB=AD=2BC,△PAD為正三角形,且平面PAD⊥平面ABCD.

(Ⅰ)證明AD⊥PC
(Ⅱ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)過點F的直線l2交動點C的軌跡于兩點P、Q,交直線l1于點R,求
RP
RQ
的最小值;
(3)過點F且與l2垂直的直線l3交動點C的軌跡于兩點R、T,問四邊形PRQT的面積是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,∠ADC=90°CD∥AB,AB=2
2
,AD=CD=
2
,M為AB的中點.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.

(1)求證:DC⊥AD;
(2)求二面角A-CD-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=2px的一個焦點與橢圓
x2
6
+
y2
2
=1的右焦點重合,
(1)求P的值;
(2)若點P(2,4)是拋物線上一點,點F為拋物線的焦點,求線段PF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=x•|x-a|.
(1)當a=2時,寫出函數(shù)f(x)的單調(diào)區(qū)間(不必證明);
(2)若a=2,求函數(shù)f(x)在區(qū)間[0,3]上的最大值;
(3)當a>2時,求函數(shù)y=f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c和函數(shù)g(x)=ax2+bx+clnx(a、b、c∈R,abc≠0).
(Ⅰ)若a=c=-1,且函數(shù)g(x)在(0,+∞)遞減,求b的取值范圍;
(Ⅱ)我們知道“對于函數(shù)f(x)=ax2+bx+c,在其圖象上任意取不同兩點A(x1,y1),B(x2,y2),線段AB中點的橫坐標為x0,則直線AB的斜率k=f′(x0)”.
(i)請證明該結(jié)論;
(ii)試探究g(x)=ax2+bx+clnx是否也具有該性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是正方體的平面展開圖,則在這個正方體中,正確的是
 
(寫出你認為正確的結(jié)論序號)
①AF∥DE;      
②DE∥MN;
③AC⊥MN;     
④AC與DE是異面直線.

查看答案和解析>>

同步練習(xí)冊答案