【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與直線平行,且過坐標(biāo)原點,圓的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)設(shè)直線和圓相交于點、兩點,求的周長.
【答案】(1)直線的極坐標(biāo)方程為。圓C的極方程為;(2).
【解析】
(1)先將直線和圓的參數(shù)方程化為普通方程,進而可得其極坐標(biāo)方程;
(2)將直線的極坐標(biāo)方程代入圓的極坐標(biāo)方程,可求出關(guān)于的方程,由,即可求出結(jié)果.
(I)因為直線的參數(shù)方程為(為參數(shù)),所以直線的斜率為1,因為直線與直線平行,且過坐標(biāo)原點,所以直線的直角坐標(biāo)方程為,所以直線的極坐標(biāo)方程為
因為圓C的參數(shù)方程為(為參數(shù)),
所以圓C的普通方程為,
即,
所以圓C的極方程為
(Ⅱ)把直線m的極坐標(biāo)方程代入中得,
,
所以
所以△ABC的周長為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“校”、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“!、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):
由此可以估計,恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市交管部門為了宣傳新交規(guī)舉辦交通知識問答活動,隨機對該市15~65歲的人群抽樣,回答問題統(tǒng)計結(jié)果如圖表所示.
組別 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的概率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | 0.9 | |
第3組 | [35,45) | 27 | |
第4組 | [45,55) | 0.36 | |
第5組 | [55,65) | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,解不等式;
(Ⅱ)設(shè)是函數(shù)的四個不同的零點,問是否存在實數(shù),使得其中三個零點成等差數(shù)列?若存在,求出所有的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐(其中為頂點,為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備.某高中成功開設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程.
(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗?zāi)芊裨诜稿e的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計 | |
學(xué)習(xí)大學(xué)先修課程 | 250 | ||
沒有學(xué)習(xí)大學(xué)先修課程 | |||
總計 | 150 |
(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進行測試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假,因為“新冠”疫情全體學(xué)生只能在家進行網(wǎng)上學(xué)習(xí),為了研究學(xué)生網(wǎng)上學(xué)習(xí)的情況,某學(xué)校隨機抽取名學(xué)生對線上教學(xué)進行調(diào)查,其中男生與女生的人數(shù)之比為,抽取的學(xué)生中男生有人對線上教學(xué)滿意,女生中有名表示對線上教學(xué)不滿意.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對線上教學(xué)是否滿意 與性別有關(guān)”;
態(tài)度 性別 | 滿意 | 不滿意 | 合計 |
男生 | |||
女生 | |||
合計 | 100 |
(2)從被調(diào)查的對線上教學(xué)滿意的學(xué)生中,利用分層抽樣抽取名學(xué)生,再在這名學(xué)生中抽取名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗介紹,求其中抽取一名男生與一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中國象棋規(guī)則下,點A處的“兵”可通過某條路徑到達點B(兵在過河前每步只能走到其前方相鄰的交叉點處,過河之后每步則可走到前方、左方、右方相鄰的交叉點處,但不能后退,“河”是指圖棋盤中第5、6條橫線之間的部分).在兵的行進過程中,若棋盤的每個交叉點均不被兵重復(fù)走到,則稱此路徑為“無重復(fù)路徑”.那么,不同的無重復(fù)路徑的條數(shù)為__________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com