3.設(shè)等比數(shù)列{an}中,a3=3,a4=9,若a1•a2•a3•…•an=344,則n=( 。
A.13B.12C.11D.10

分析 先求出數(shù)列的通項(xiàng)公式,再根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和等差數(shù)列的求和公式可得$\frac{n(n-3)}{2}$=44,解得即可

解答 解:等比數(shù)列{an}中,a3=3,a4=9,則q=3,
∴a1=$\frac{1}{3}$,
∴an=$\frac{1}{3}$•3n-1=3n-2
∴a1•a2•a3•…•an=3-1+0+1+…+(n-2)=3${\;}^{\frac{n(n-3)}{2}}$=344,
∴$\frac{n(n-3)}{2}$=44,
解得n=11,
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式和求和公式以及指數(shù)冪的運(yùn)算性質(zhì),屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓M:(x-a)2+(y-b)2=9,M在拋物線C:x2=2py(p>0)上,圓M過原點(diǎn)且與C的準(zhǔn)線相切.
(Ⅰ) 求C的方程;
(Ⅱ) 點(diǎn)Q(0,-t)(t>0),點(diǎn)P(與Q不重合)在直線l:y=-t上運(yùn)動(dòng),過點(diǎn)P作C的兩條切線,切點(diǎn)分別為A,B.求證:∠AQO=∠BQO(其中O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)$f(x)=2{sin^2}x+2\sqrt{3}sinx•cosx+1\;(x∈R)$的值域,最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)f(x)是周期為4的偶函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=$\sqrt{3}$tan$\frac{πx}{6}$,若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-ax-a=0恰有3個(gè)不同實(shí)數(shù)根,則正數(shù)a的取值范圍是( 。
A.($\frac{3}{7}$,1)B.($\frac{3}{4}$,1)C.(0,$\frac{3}{7}$)D.(0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\left\{{\sqrt{a_n}}\right\}$是等比數(shù)列,a1=1,a2=2,則{an}的前5項(xiàng)和為( 。
A.31B.30C.$31\sqrt{2}$D.$30\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是等比數(shù)列,且a2•a5=$\frac{32}{9},{a_1}+{a_6}$=11.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=21,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.要得到函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象,只需將函數(shù)y=cos2x的圖象( 。
A.向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向右平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向右平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校高一(1)、(2)兩個(gè)班聯(lián)合開展“詩詞大會(huì)進(jìn)校園,國(guó)學(xué)經(jīng)典潤(rùn)心田”古詩詞競(jìng)賽主題班會(huì)活動(dòng),主持人從這兩個(gè)班分別隨機(jī)選出20名同學(xué)進(jìn)行當(dāng)場(chǎng)測(cè)試,他們的測(cè)試成績(jī)按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分組用頻率分布直方圖與莖葉統(tǒng)計(jì)如下(單位:分)
(1)班20名同學(xué)成績(jī)頻率分布直方圖

(2)班20名同學(xué)成績(jī)莖葉圖
45
52
64 5 6 8
70 5 5 8 8 8 8 9
8005 5
945
(Ⅰ)分別計(jì)算兩個(gè)班這20名同學(xué)的測(cè)試成績(jī)?cè)赱80,90)的頻率,并補(bǔ)全頻率分布直方圖;
(Ⅱ)從(2)班參加測(cè)試的不低于80分的同學(xué)中隨機(jī)選取兩人,求這兩人中至少有1人的成績(jī)?cè)?0分以上的概率;
(III )運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)分析比較兩個(gè)班學(xué)生的古詩詞水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$\frac{5i}{2-i}=a+bi$(a,b∈R,i為虛數(shù)單位),則a+b=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案