3.某學(xué)校有2500名學(xué)生,其中高一1000人,高二900人,高三600人,為了了解學(xué)生的身體健康狀況,采用分層抽樣的方法,若從本校學(xué)生中抽取100人,從高一和高三抽取樣本數(shù)分別為a,b,且直線ax+by+8=0與以A(1,-1)為圓心的圓交于B,C兩點(diǎn),且∠BAC=120°,則圓C的方程為( 。
A.(x-1)2+(y+1)2=1B.(x-1)2+(y+1)2=2C.(x-1)2+(y+1)2=$\frac{18}{17}$D.(x-1)2+(y+1)2=$\frac{12}{15}$

分析 根據(jù)分層抽樣的定義進(jìn)行求解a,b,利用點(diǎn)到直線的距離公式,求出A(1,-1)到直線的距離,可得半徑,即可得出結(jié)論.

解答 解:由題意,$\frac{100}{2500}=\frac{a}{1000}=\frac{600}$,∴a=40,b=24,
∴直線ax+by+8=0,即5x+3y+1=0,
A(1,-1)到直線的距離為$\frac{|5-3+1|}{\sqrt{25+9}}$=$\frac{3}{\sqrt{34}}$,
∵直線ax+by+8=0與以A(1,-1)為圓心的圓交于B,C兩點(diǎn),且∠BAC=120°,
∴r=$\frac{6}{\sqrt{34}}$,
∴圓C的方程為(x-1)2+(y+1)2=$\frac{18}{17}$,
故選C.

點(diǎn)評 本題考查分層抽樣,考查圓的方程,考查直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知各項(xiàng)都為正的等差數(shù)列{an}中,a2+a3+a4=15,若a1+2,a3+4,a6+16成等比數(shù)列,則a10=( 。
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$,g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2015}}{2015}$,設(shè)函數(shù)F(x)=f(x+3)•g(x-4),且函數(shù)的所有零點(diǎn)均在[a,b](a,b∈Z)內(nèi),則b-a的最小值為( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且Sn滿足n(n+1)Sn2+(n2+n-1)Sn-1=0(n∈N*),則S1+S2+…+S2017=$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)隨機(jī)變量X服從正態(tài)分布N(4,σ2),若P(X>m)=0.3,則P(X>8-m)=( 。
A.0.2B.0.3C.0.7D.與σ的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知p:x2-8x-20≤0;q:x2-2x+1-m2≤0(m>0);若¬p是¬q的充分而不必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax+xln x(a∈R).
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.計(jì)算sin21°cos9°+sin69°sin9°的結(jié)果是( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,平面PAB⊥平面ABCD,AD∥BC,PA⊥AB,CD⊥AD,BC=CD=$\frac{1}{2}$AD,E為AD的中點(diǎn).
(Ⅰ)求證:PA⊥CD;
(Ⅱ)求證:平面PBD⊥平面PAB;
(Ⅲ)在平面PAB內(nèi)是否存在M,使得直線CM∥平面PBE,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案