【題目】已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,若曲線在直線的上方,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】
(1)根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率,求出切點的坐標(biāo),由直線的點斜式方程分析可得答案;(2)根據(jù)題意,原問題可以轉(zhuǎn)化為恒成立,設(shè),求出的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得其最大值,分析可得答案.
(1)當(dāng)時,,其導(dǎo)數(shù),.
又因為,
所以曲線y=f(x)在點(0,f(0))處的切線方程為;
(2)根據(jù)題意,當(dāng)時,
“曲線y=f(x)在直線的上方”等價于“恒成立”,
又由x>0,則 ,
則原問題等價于恒成立;
設(shè),則,
又由,則,則函數(shù)在區(qū)間上遞減,
又由,則有,
若恒成立,必有,
即的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了各級城市的大街小巷,為了解我市的市民對共享單車的滿意度,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了50人進行分析.若得分低于60分,說明不滿意,若得分不低于60分,說明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1.
(Ⅰ)根據(jù)莖葉圖找出40歲以上網(wǎng)友中滿意度得分的眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);
滿意 | 不滿意 | 合計 | |
40歲以下 | |||
40歲以上 | |||
合計 |
(Ⅲ)先采用分層抽樣的方法從40歲及以下的網(wǎng)友中選取7人,再從這7人中隨機選出2人,將頻率視為概率,求選出的2人中至少有1人是不滿意的概率.
參考格式:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在各項均為正數(shù)的等比數(shù)列{an}中,,且a4+a5=6a3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{log2an}的前n項和為Sn,求Sn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:
溫差 | ||||||
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合與的關(guān)系;
(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測當(dāng)晝夜溫差升高時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有學(xué)生500人,學(xué)校為了解學(xué)生的課外閱讀時間,從中隨機抽取了50名學(xué)生,獲得了他們某一個月課外閱讀時間的數(shù)據(jù)(單位:小時),將數(shù)據(jù)分為5組:[10,12),[12,14),[14,16),[16,18),[18,20],整理得到如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的x的值;
(2)試估計該校所有學(xué)生中,課外閱讀時間不小于16小時的學(xué)生人數(shù);
(3)已知課外閱讀時間在[10,12)的樣本學(xué)生中有3名女生,現(xiàn)從閱讀時間在[10,12)的樣本學(xué)生中隨機抽取3人,記X為抽到女生的人數(shù),求X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對給定的d∈N*,記由數(shù)列構(gòu)成的集合.
(1)若數(shù)列{an}∈Ω(2),寫出a3的所有可能取值;
(2)對于集合Ω(d),若d≥2.求證:存在整數(shù)k,使得對Ω(d)中的任意數(shù)列{an},整數(shù)k不是數(shù)列{an}中的項;
(3)已知數(shù)列{an},{bn}∈Ω(d),記{an},{bn}的前n項和分別為An,Bn.若|an+1|≤|bn+1|,求證:An≤Bn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某種螺帽是由一個半徑為2的半球體挖去一個正三棱錐構(gòu)成的幾何體,該正三棱錐的底面三角形內(nèi)接于半球底面大圓,頂點在半球面上,則被挖去的正三棱錐體積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)在區(qū)間,內(nèi)各有一個極值點.
(I)求的最大值;
(II)當(dāng)時,設(shè)函數(shù)在點處的切線為,若在點處穿過函數(shù)的圖象(即動點在點附近沿曲線運動,經(jīng)過點時,從的一側(cè)進入另一側(cè)),求函數(shù)的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com