16.已知a>1,設命題P:a(x-2)+1>0,命題Q:(x-1)2>a(x-2)+1.試求使得P、Q都是真命題的x的集合.

分析 由a的范圍分別求解一元一次不等式及一元二次不等式,然后分1<a<2,a=2及a>2三種情況討論求得使得P、Q都是真命題的x的集合.

解答 解:∵a>1,依題意,求使得P:a(x-2)+1>0,Q:(x-1)2>a(x-2)+1都是真命題的x的集合為P,Q,
∴$P=\left\{{x\left|{x>2-\frac{1}{a}}\right.}\right\}$,Q={x|(x-1)2>a(x-2)+1}={x|(x-2)(x-a)>0}.
①當1<a<2時,則有$\left\{\begin{array}{l}{x>2-\frac{1}{a}}\\{x>2或x<a}\end{array}\right.$,而$a-(2-\frac{1}{a})=a+\frac{1}{a}-2>0$,∴$a>2-\frac{1}{a}$,
即當1<a<2時,使得P、Q都是真命題的x的集合為{x|x>2或2-$\frac{1}{a}$<x<a};
②當a=2時,可得使得P、Q都是真命題的x的集合為{x|x>$\frac{3}{2}$且x≠2};
③當a>2時,則有$\left\{\begin{array}{l}{x>2-\frac{1}{a}}\\{x>a或x<2}\end{array}\right.$,此時使得P、Q都是真命題的x的集合為{x|x>a或2-$\frac{1}{a}$<x<2}.

點評 本題考查命題的真假判斷與應用,考查了分類討論的數(shù)學思想方法,考查數(shù)學轉化思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知sin2α=3sin2β,則$\frac{{tan({α-β})}}{{tan({α+β})}}$=( 。
A.2B.$\frac{3}{4}$C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$$⊥\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|是( 。
A.3B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.二次函數(shù)f(x)=x2-2x-3在[-2,1]上有幾個零點(  )
A.2B.3C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a2,a4,a8成等比數(shù)列,若${b_n}=\frac{1}{{n({{a_n}+2})}}$,則數(shù)列{bn}的前n項和的取值范圍是$[{\frac{1}{3},\frac{3}{4}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+$\frac{a}{x+1}+b$(a,b∈R)
(1)當a=4,b=-2時,求函數(shù)f(x)在x=1處的切線方程
(2)在(1)的前提下,若函數(shù)f(x)的圖象恒不在曲線y=$\frac{k}{x+1}$(x≥1)的下方,求k的取值范圍
(3)若f(x)在定義域上是單調函數(shù),且零點為1,求a(b+1)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.等差數(shù)列{an},其前n項和為Sn,且S30>0,S31<0,則前15項之和最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有如下命題:“盡有委米依坦內角,下周八尺,高五尺,圓周率約為三,問:積為幾何?”其意思為:“在屋內墻角處堆放米(如圖,米堆為一個圓錐的四分之一),米堆底部的弧長為8尺,米堆的高為5尺,已知圓周率約為3,問米堆的體積為多少?”(  )
A.$\frac{4096}{9}$B.$\frac{1280}{9}$C.$\frac{320}{9}$D.$\frac{256}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若關于x的不等式組$\left\{\begin{array}{l}{{x}^{2}-ax+4>0}\\{a{x}^{2}-x+1>0}\end{array}\right.$對于x∈[1,3]恒成立,則實數(shù)a的取值范圍是($\frac{1}{4}$,4).

查看答案和解析>>

同步練習冊答案