【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利,根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運(yùn)行時,發(fā)車時間間隔(單位:分鐘)滿足: ,平均每班地鐵的載客人數(shù) (單位:人)與發(fā)車時間間隔近似地滿足函數(shù)關(guān)系:,

1)若平均每班地鐵的載客人數(shù)不超過1560人,試求發(fā)車時間間隔的取值范圍;

2)若平均每班地鐵每分鐘的凈收益為(單位:元),則當(dāng)發(fā)車時間間隔為多少時,平均每班地鐵每分鐘的凈收益最大?并求出最大凈收益.

【答案】1;(2,最大值為260.

【解析】

1)根據(jù)題意即求解不等式;

2)根據(jù)題意求出的解析式,利用函數(shù)單調(diào)性或基本不等式求最值.

1)當(dāng)超過1560,所以不滿足題意;

當(dāng),載客人數(shù)不超過1560,

,解得,由于

所以;

2)根據(jù)題意,

根據(jù)基本不等式,,當(dāng)且僅當(dāng),即時取得等號,所以,

即當(dāng)時,平均利潤的最大值為260元,

當(dāng)時,單調(diào)遞減,

綜上所述,最大值為260.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動力和煤、電耗如下表:

產(chǎn)

千瓦

A產(chǎn)

3

9

4

B產(chǎn)

10

4

5

已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)在條件有限,該企業(yè)僅有勞動力300個,煤360噸,并且供電局只能供電200千瓦,試問:該企業(yè)生產(chǎn)AB兩種產(chǎn)品各多少噸,才能獲得最大利潤?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還”其大意為:“有一個人走378里路,第一天健步走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,請問此人第5天走的路程為( )

A. 36里 B. 24里 C. 18里 D. 12里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y = f(x)是定義域為R的偶函數(shù),當(dāng)x≥0時,函數(shù)f(x)的圖象是由一段拋物線和一條射線組成(如圖所示)

當(dāng)時,y的取值范圍是______;

如果對任意 (b <0),都有,那么b的最大值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(),曲線在點處的切線方程為.

(1)求實數(shù)的值,并求的單調(diào)區(qū)間;

(2)試比較的大小,并說明理由;

(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若存在實數(shù)、)使得對于任意 都有成立,則稱函數(shù)是帶狀函數(shù);若存在最小值,則稱為帶寬.

1)判斷函數(shù) 是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,請說明理由;

2)求證:函數(shù))是帶狀函數(shù);

3)求證:函數(shù)是帶狀函數(shù)的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,若分別是棱的中點,則必有( )

A.

B.

C. 平面平面

D. 平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將平面上每個點都以紅、藍(lán)兩色之一著色,證明:存在這樣的兩個相似三角形,它們的相似比為1995,并且每一個三角形的三個頂點同色。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,拋物線的焦點為,射線與拋物線相交于點,與其準(zhǔn)線相交于點,則( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案