在焦點(diǎn)分別為F1、F2的雙曲線(xiàn)上有一點(diǎn)P,若∠F1PF2=
π
3
,|PF2|=2|PF1|,則該雙曲線(xiàn)的離心率等于(  )
A、2
B、
2
C、3
D、
3
考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,解三角形,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:由雙曲線(xiàn)的定義,結(jié)合條件求出|PF2|=4a,|PF1|=2a,再由余弦定理,即可得到a,c的關(guān)系式,再由離心率公式,即可得到.
解答: 解:由于|PF2|=2|PF1|,
則P在雙曲線(xiàn)的左支上,
則|PF2|-|PF1|=2a,
解得,|PF2|=4a,|PF1|=2a,
由于∠F1PF2=
π
3
,
則在△F1PF2中,由余弦定理,可得,
cos60°=
|PF1|2+|PF2|2-|F1F2|2
2|PF1|•|PF2|

=
4a2+16a2-4c2
2•2a•4a
=
1
2

則有c=
3
a,即有e=
c
a
=
3

故選D.
點(diǎn)評(píng):本題考查雙曲線(xiàn)的定義和性質(zhì),考查余弦定理的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S9=-18,S13=-52,{bn}為等比數(shù)列,且b5=a5,b7=a7,則b15的值為( 。
A、64B、128
C、-64D、-128

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一點(diǎn)D,使△ABD為鈍角三角形的概率為(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=x-ex在[-1,1]上的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=log2x•log2(x2)+alog2x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示:給出函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的圖象的一段,則f(x)的表達(dá)式為( 。
A、y=2sin(x+
π
6
B、y=2sin(x-
π
6
C、y=-2sin(2x+
π
6
D、y=2sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形ABCD是平行四邊形,直線(xiàn)SC⊥平面ABCD,E是SA的中點(diǎn),求證:平面BDE⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下表是某地一家超市在2014年一月份某周的時(shí)間x與每天獲得的利潤(rùn)y(單位:萬(wàn)元)的有關(guān)數(shù)據(jù).
時(shí)間x星期二星期三星期四星期五星期六
利潤(rùn)y23569
(1)畫(huà)出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線(xiàn)性回歸直線(xiàn)方程
y
=
b
x+
a
;
(3)估計(jì)星期日獲得的利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線(xiàn)x2-
y2
a2
=1(a>0)的一條漸近線(xiàn)為y=4x,則過(guò)拋物線(xiàn)y2=ax的焦點(diǎn)且垂直于x軸的弦AB,與拋物線(xiàn)的頂點(diǎn)組成的三角形的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案