11.已知集合A={1,2,3,4},B={x|x2-x-2>0},則A∩B={3,4}.

分析 求解一元二次不等式化簡(jiǎn)B,再由交集運(yùn)算得答案.

解答 解:∵A={1,2,3,4},B={x|x2-x-2>0}={x|x<-1或x>2},
∴A∩B={1,2,3,4}∩{x|x<-1或x>2}={3,4}.
故答案為:{3,4}.

點(diǎn)評(píng) 本題考查交集及其運(yùn)算,考查一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)a、b表示兩條直線,α、β表示兩個(gè)平面,則下列命題正確的是②③.(填寫(xiě)所有正確命題的序號(hào))
①若a∥b,a∥α,則b∥α; ②若a∥b,a?α,b⊥β,則α⊥β;
③若α∥β,a⊥α,則a⊥β;④若α⊥β,a⊥b,a⊥α,則b⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與直線x+2y-2=0交于A、B兩點(diǎn),|AB|=$\sqrt{5}$,且弦AB的中點(diǎn)的坐標(biāo)為(m,$\frac{1}{2}$),求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)隨機(jī)變量ξ~N(0,1),若P(ξ≥1)=p,則P(-1<ξ<0)=$\frac{1}{2}-$p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在三角形ABC中,角A、B、C的對(duì)邊分別為a,b,c,a=4bcosC,$sinC=\frac{{3\sqrt{10}}}{10}$
(1)求角B 的值;
(2)若$b=\sqrt{5}$,求三角形ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)P、Q、R、S是橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的四個(gè)頂點(diǎn),四邊形PQRS是圓C0:x2+y2=$\frac{36}{7}$的外切平行四邊形,其面積為12$\sqrt{3}$.橢圓C1的內(nèi)接△ABC的重心(三條中線的交點(diǎn))為坐標(biāo)原點(diǎn)O.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)△ABC的面積是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在區(qū)間(0,1)上隨機(jī)取兩個(gè)實(shí)數(shù)m,n,則關(guān)于x的一元二次方程${x^2}-2\sqrt{m}x+2n=0$有實(shí)數(shù)根的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=lnx,函數(shù)g(x)=$\frac{1}{x}$.
(Ⅰ)證明:函數(shù)F(x)=f(x)-g(x)在(0,+∞)上為增函數(shù).
(Ⅱ)用反證法證明:f(x)=2的解是唯一的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知xy=1,且$0<y<\frac{{\sqrt{2}}}{2}$,則$\frac{{{x^2}+4{y^2}}}{x-2y}$的最小值為( 。
A.4B.$\frac{9}{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案