1.設(shè)命題p:?n∈N,n2>2n,則?p為( 。
A.?n∈N,n2>2nB.?n∈N,n2>2nC.?n∈N,n2≤2nD.?n∈N,n2≤2n

分析 直接利用特稱(chēng)命題的否定是全稱(chēng)命題寫(xiě)出結(jié)果即可.

解答 解:因?yàn)樘胤Q(chēng)命題的否定是全稱(chēng)命題,所以命題的否定為:?n∈N,n2≤2n
故選C.

點(diǎn)評(píng) 本題考查命題的否定特稱(chēng)命題與全稱(chēng)命題的關(guān)系,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.兩條平行線l1,l2分別過(guò)點(diǎn)P(-1,2),Q(2,-3),它們分別繞P,Q旋轉(zhuǎn),但始終保持平行,則l1,l2之間距離的取值范圍是( 。
A.(5,+∞)B.(0,5]C.$(\sqrt{34},+∞)$D.$(0,\sqrt{34}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.對(duì)兩個(gè)變量進(jìn)行回歸分析,則下列說(shuō)法中不正確的是(  )
A.有樣本數(shù)據(jù)得到的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$必經(jīng)過(guò)樣本中心($\overline{x}$,$\overline{y}$)
B.殘差平方和越大,模型的擬合效果越好
C.用R2來(lái)刻畫(huà)回歸效果,R2越大,說(shuō)明模型的擬合效果越好
D.若散點(diǎn)圖中的樣本呈條狀分布,則變量y和x之間具有線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)滿足f(-x)=f(x),其圖象與直線y=2的某兩個(gè)交點(diǎn)橫坐標(biāo)為分別為x1,x2,且|x1-x2|的最小值為π,則(  )
A.$ω=\frac{1}{2},φ=\frac{π}{4}$B.$ω=2,φ=\frac{π}{4}$C.$ω=\frac{1}{2},φ=\frac{π}{2}$D.$ω=2,φ=\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.a(chǎn)b≥0是|a-b|=|a|-|b|的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料.已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如表所示:
  甲 乙 原料限額
 A(噸) 3 2 12
 B(噸) 1 2 8
(1)設(shè)該企業(yè)每天生產(chǎn)甲、乙兩種產(chǎn)品分別為x,y噸,試寫(xiě)出關(guān)于的線性約束條件并畫(huà)出可行域;
(2)如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,試求該企業(yè)每天可獲得的最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={-1,0,1,2},B={x|x(x-2)<0},則A∩B等于( 。
A.{0}B.{-1}C.{1}D.{0,-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)$f(x)={cos^2}x+sinx,x∈[\frac{π}{3},\frac{5π}{6}]$,則f(x)的最大值與最小值的和為( 。
A.$\frac{1}{4}$B.$\frac{9}{4}$C.$\frac{{2\sqrt{3}+5}}{4}$D.$\frac{{2\sqrt{3}+6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案