函數(shù)f(x)=(x-1)2+2,x∈[0,2)的值域是
 
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出函數(shù)的對稱軸,利用二次函數(shù)的性質(zhì)寫出結(jié)果即可.
解答: 解:函數(shù)f(x)=(x-1)2+2,x∈[0,2),
函數(shù)的對稱軸為x=1,開口向上,函數(shù)的最小值為f(1)=2,函數(shù)的最大值為:f(0)=3.
函數(shù)的值域?yàn)閇2,3].
故答案為:[2,3].
點(diǎn)評:本題考查函數(shù)的值域,二次函數(shù)的基本性質(zhì)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且1+
tanA
tanB
=
2c
b

(1)求角A;
(2)若向量
m
=(0,-1),向量
n
=(cosB,2cos2
C
2
),試求|m+n|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
cos2x的圖象可以看作是把函數(shù)y=
1
2
cos(2x+
π
3
)圖象( 。
A、向左平移
π
3
得到的
B、向左平移
π
6
得到的
C、向右平移
π
3
得到的
D、向右平移
π
6
得到的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩名運(yùn)動員在某項(xiàng)測試中的8次成績?nèi)缦拢?br />甲:8,9,14,15,15,16,21,22
乙:7,8,13,15,15,17,22,23
則下面說法正確的是( 。
A、甲的平均數(shù)和方差都比乙的大
B、甲、乙的平均數(shù)相等,但甲的方差比乙的方差小
C、甲、乙的平均數(shù)相等,但甲的方差比乙的方差大
D、甲的平均數(shù)小于乙的平均數(shù),但甲的方差大于乙的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)畫出函數(shù)f(x)=|x|(x-4)的圖象;
(2)利用圖象寫出函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)=k有三個不同的根求k的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是R上的奇函數(shù),在[0,+∞)上圖象如圖所示,則滿足f(x-1)>0的x的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:y=3x,l2:y=
1
2
x,如圖所示,在第一象限內(nèi),在l1上從左至右,從下至上依次取點(diǎn)A1,A2,A3,…,An,在l2上從左至右,從下至上依次取點(diǎn)B1,B2,B3,…,Bn,若記S A1OB1=S1,S A2OB2=S2,…,S AnOBn=Sn,….
(1)求∠A1OB1的大。
(2)再記S A1OB2=S1′,S A2OB1=S2′,試比較S1+S2與S1′+S2′的大小關(guān)系.
(3)若S1=1,且Sn+1=1+
1
n
(S1+S2+…+Sn),n∈N*,求四邊形An+1Bn+1BnAn(n∈N*)的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:-1<ln(2x-1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
(x>0),若存在實(shí)數(shù)m、n(m<n)使f(x)在區(qū)間(m,n)上的值域?yàn)椋╰m,tn),則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案