已知雙曲線(xiàn),點(diǎn)、分別為雙曲線(xiàn)的左、右焦點(diǎn),動(dòng)點(diǎn)軸上方.
(1)若點(diǎn)的坐標(biāo)為是雙曲線(xiàn)的一條漸近線(xiàn)上的點(diǎn),求以、為焦點(diǎn)且經(jīng)過(guò)點(diǎn)的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線(xiàn)上任取一點(diǎn),從點(diǎn)向(2)中圓引一條切線(xiàn),切點(diǎn)為. 問(wèn)是否存在一個(gè)定點(diǎn),恒有?請(qǐng)說(shuō)明理由.

(1)(2)(3)存在

解析試題分析:(1)雙曲線(xiàn)的左、右焦點(diǎn)、的坐標(biāo)分別為,
∵雙曲線(xiàn)的漸進(jìn)線(xiàn)方程為:
∴點(diǎn)的坐標(biāo)為是漸進(jìn)線(xiàn)上的點(diǎn),即點(diǎn)的坐標(biāo)為。
∴橢圓的長(zhǎng)軸長(zhǎng)
∵半焦距,∴橢圓的方程            ..5分
(2)∵,∴,即
又圓心在線(xiàn)段的垂直平分線(xiàn)上,故可設(shè)圓心
!唷的外接圓的方程為     ..9分
(3)假設(shè)存在這樣的定點(diǎn)設(shè)點(diǎn)P的坐標(biāo)為
∵恒有,∴
對(duì)恒成立。
從而,消去,得
∵方程的判別式
∴①當(dāng)時(shí),方程無(wú)實(shí)數(shù)解,∴不存在這樣的定點(diǎn);
②當(dāng)時(shí),方程有實(shí)數(shù)解,此時(shí),即直線(xiàn)與圓相離或相切,故此時(shí)存在這樣的定點(diǎn);      14分
考點(diǎn):本題考查了圓錐曲線(xiàn)方程的求法及直線(xiàn)與圓的位置關(guān)系
點(diǎn)評(píng):解析幾何綜合題主要考查直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系以及范圍、最值、定點(diǎn)、定值、存在性等問(wèn)題,直線(xiàn)與多種曲線(xiàn)的位置關(guān)系的綜合問(wèn)題將會(huì)逐步成為今后命題的熱點(diǎn),尤其是把直線(xiàn)和圓的位置關(guān)系同本部分知識(shí)的結(jié)合,將逐步成為今后命題的一種趨勢(shì)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程是:(為參數(shù)).
(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),點(diǎn)的直角坐標(biāo)為,若,求直線(xiàn)的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩定點(diǎn)E(-2,0),F(2,0),動(dòng)點(diǎn)P滿(mǎn)足,由點(diǎn)P向x軸作垂線(xiàn)段PQ,垂足為Q,點(diǎn)M滿(mǎn)足,點(diǎn)M的軌跡為C.
(1)求曲線(xiàn)C的方程
(2)過(guò)點(diǎn)D(0,-2)作直線(xiàn)與曲線(xiàn)C交于A、B兩點(diǎn),點(diǎn)N滿(mǎn)足
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),且它的離心率.直線(xiàn)
與橢圓交于、兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求證:兩點(diǎn)的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線(xiàn)與圓相切,橢圓上一點(diǎn)滿(mǎn)足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,過(guò)作與軸垂直的直線(xiàn)與橢圓交于,而與拋物線(xiàn)交于兩點(diǎn),且.

(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)的直線(xiàn)與橢圓相交于兩點(diǎn),
設(shè)為橢圓上一點(diǎn),且滿(mǎn)足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線(xiàn)l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的斜率k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn)的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線(xiàn)所截得的線(xiàn)段的長(zhǎng)為8,求直線(xiàn)的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線(xiàn)的右頂點(diǎn)為A,右焦點(diǎn)為F,右準(zhǔn)線(xiàn)與軸交于點(diǎn)B,且與一條漸近線(xiàn)交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,,過(guò)點(diǎn)F的直線(xiàn)與雙曲線(xiàn)右支交于點(diǎn)
(Ⅰ)求此雙曲線(xiàn)的方程;
(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線(xiàn)的離心率為2,焦點(diǎn)與橢圓的焦點(diǎn)相同,求雙曲線(xiàn)的方程及焦點(diǎn)坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案