已知P是橢圓
x2
16
+
y2
9
=1
上的點(diǎn),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),若∠F1PF2=60°,則△F1PF2的面積為______.
∵a=4,b=3
∴c=
7

設(shè)|PF1|=t1,|PF2|=t2,
則由橢圓的定義可得:t1+t2=8①
在△F1PF2中∠F1PF2=60°,
所以t12+t22-2t1t2•cos60°=28②,
由①2-②得t1t2=12,
所以SF1PF2=
1
2
t1t2•sin60°=
1
2
×12×
3
2
=3
3
,
故答案為3
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
y2
16
+
x2
4
=1
上一點(diǎn)M到焦點(diǎn)F1的距離為2,N是MF1的中點(diǎn),O為坐標(biāo)原點(diǎn),則|ON|等于( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P是橢圓
x2
16
+
y2
12
=1(y≠0)
上的動點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的兩個焦點(diǎn),O是坐標(biāo)原點(diǎn),若M是∠F1PF2平分線上的一點(diǎn),且F1M⊥MP,則OM的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1,F(xiàn)2為橢圓
x2
25
+
y2
9
=1
的兩個焦點(diǎn),A,B為過F1的直線與橢圓的兩個交點(diǎn),則△AF1F2的周長為______△ABF2周長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A1,A2為橢圓
x2
4
+y2=1的左右頂點(diǎn),在長軸A1A2上隨機(jī)任取點(diǎn)M,過M作垂直于x軸的直線交橢圓于點(diǎn)P,則使∠PA1A2<45°的概率為( 。
A.
4
5
B.
7
10
C.
3
10
D.
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn).
(1)設(shè)橢圓C上的點(diǎn)A(1,
3
2
)
到兩焦點(diǎn)的距離之和為4,求橢圓C的方程;
(2)設(shè)P是(1)中橢圓上的一點(diǎn),∠F1PF2=60°求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓x2+
ky2
5
=1
的一個焦點(diǎn)是(0,2),那么實(shí)數(shù)k的值為(  )
A.-25B.25C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知離心率為
1
2
的橢圓C,其中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,該橢圓的一個短軸頂點(diǎn)與其兩焦點(diǎn)構(gòu)成一個面積為4
3
的等腰三角形,則橢圓C的長軸長為( 。
A.4B.8C.4
2
D.8
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若兩集合A=[0,3],B=[0,3],分別從集合A、B中各任取一個元素m、n,即滿足m∈A,n∈B,記為(m,n),
(Ⅰ)若m∈Z,n∈Z,寫出所有的(m,n)的取值情況,并求事件“方程
x2
m+1
+
y2
n+1
=1
所對應(yīng)的曲線表示焦點(diǎn)在x軸上的橢圓”的概率;
(Ⅱ)求事件“方程
x2
m+1
+
y2
n+1
=1
所對應(yīng)的曲線表示焦點(diǎn)在x軸上的橢圓,且長軸長大于短軸長的
2
倍”的概率.

查看答案和解析>>

同步練習(xí)冊答案