【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù),在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
【答案】(1)填表見解析;(2)單調(diào)遞增區(qū)間為,(3)最小值為-2;最大值為1.
【解析】
(1)根據(jù)五點(diǎn)作圖法補(bǔ)充表格,再計(jì)算得到,,得到函數(shù)表達(dá)式.
(2)計(jì)算得到答案.
(3),得到,得到函數(shù)的最值.
(1)根據(jù)表格可得且,∴.
由當(dāng)時(shí),,得,∴.
故函數(shù)的解析式為.
表格補(bǔ)充完整如下:
0 | |||||
x | |||||
0 | 2 | 0 | -2 | 0 |
(2),由,,
解得,,
故函數(shù)的單調(diào)遞增區(qū)間為,.
(3)因?yàn)?/span>,所以,所以.
所以當(dāng),即時(shí),在區(qū)間上的最小值為-2.
當(dāng),即時(shí),在區(qū)間上的最大值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個(gè)頂點(diǎn)落在半徑為的球的表面上,三角形有一個(gè)角為且其對(duì)邊長(zhǎng)為3,球心到所在的平面的距離恰好等于半徑的一半,點(diǎn)為球面上任意一點(diǎn),則三棱錐的體積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在貫徹中共中央國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過程中,某單位定點(diǎn)幫扶甲、乙兩個(gè)村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo)和,制成下圖,其中“”表示甲村貧困戶,“”表示乙村貧困戶.
若,則認(rèn)定該戶為“絕對(duì)貧困戶”,若,則認(rèn)定該戶為“相對(duì)貧困戶”,若,則認(rèn)定該戶為“低收入戶”;
若,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.
(1)從甲村50戶中隨機(jī)選出一戶,求該戶為“今年不能脫貧的絕對(duì)貧困戶”的概率;
(2)若從所有“今年不能脫貧的非絕對(duì)貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學(xué)期望;
(3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大小(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時(shí),若函數(shù)存在與直線平行的切線,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),,若的最小值是,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;
:實(shí)數(shù)滿足.
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)滿足不等式;
命題q:關(guān)于不等式對(duì)任意的恒成立.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)在數(shù)列中,若,(,,為常數(shù)),則稱為“等方差數(shù)列”.下列對(duì)“等方差數(shù)列”的判斷正確的是( )
A.若是等差數(shù)列,則是等方差數(shù)列
B.是等方差數(shù)列
C.若是等方差數(shù)列,則(,為常數(shù))也是等方差數(shù)列
D.若既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲船在點(diǎn)發(fā)現(xiàn)乙船在北偏東的處,里,且乙船以每小時(shí)10里的速度向正北行駛,已知甲船的速度是每小時(shí)里,問:甲船以什么方向前進(jìn),才能與乙船最快相遇,相遇時(shí)甲船行駛了多少小時(shí)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實(shí)常數(shù)k和b,使得函數(shù)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:恒成立,則稱此直線的“隔離直線”,已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)),有下列命題:
①內(nèi)單調(diào)遞增;
②之間存在“隔離直線”,且b的最小值為;
③之間存在“隔離直線”,且k的取值范圍是;
④之間存在唯一的“隔離直線”.
其中真命題的序號(hào)為__________.(請(qǐng)?zhí)顚懻_命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com