平面直角坐標(biāo)系中,直線l的參數(shù)方程是
x=t
y=
3
t
(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.
(1)求直線l的極坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),求|AB|.
(1)直線l的參數(shù)方程是
x=t
y=
3
t
(t為參數(shù)),化為普通方程得:y=
3
x
∴在平面直角坐標(biāo)系中,直線l經(jīng)過坐標(biāo)原點(diǎn),傾斜角是
π
3
,
因此,直線l的極坐標(biāo)方程是θ=
π
3
,(ρ∈R);…(5分)
(2)把θ=
π
3
代入曲線C的極坐標(biāo)方程ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0,得ρ2-
3
ρ-3=0
∴由一元二次方程根與系數(shù)的關(guān)系,得ρ12=
3
,ρ1ρ2=-3,
∴|AB|=|ρ12|=
(ρ1+ρ2)2-4ρ1ρ2
=
15
.…(10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某圓的極坐標(biāo)方程是,求:
(1)求圓的普通方程和一個(gè)參數(shù)方程;
(2)圓上所有點(diǎn)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,已知兩點(diǎn)的極坐標(biāo)為,則(其中為極點(diǎn))的面積為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在長方體ABCD-A1B1C1D1中, |AD|=3,|CD|=4,|DD1|=2,作DEACE,求點(diǎn)B1到點(diǎn)E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)M(3,-3,1)關(guān)于y軸的對稱點(diǎn)是?(  )
A.(-3,3,-1)
B.(-3,-3,-1)
C.(3,-3,-1)
D.(-3,3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xoy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1與C2交點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線的中點(diǎn),已知直線PQ的參數(shù)方程為
x=t3+a
y=
b
2
t3+1
(t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,已知兩點(diǎn)A、B的極坐標(biāo)分別為(),(),則△AOB(其中O為極點(diǎn))的面積為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,點(diǎn)到直線的距離是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,圓心為,且過極點(diǎn)的圓的方程是____________.

查看答案和解析>>

同步練習(xí)冊答案