方程為+=1(a>b>0)的橢圓左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,D是它短軸上的一個(gè)頂點(diǎn),若3=+2,則該橢圓的離心率為( )
A. B.
C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
關(guān)于平面向量a,b,c,有下列四個(gè)命題:
①若a∥b,a≠0,∃λ∈R,使得b=λa;
②若a·b=0,則a=0或b=0;
③存在不全為零的實(shí)數(shù)λ,μ,使得c=λa+μb;
④若a·b=a·c,則a⊥(b-c).
其中正確的命題序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,過坐標(biāo)原點(diǎn)的一條直線與函數(shù)f(x)=的圖象交于P,Q兩點(diǎn),則線段PQ長(zhǎng)的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)A(-2,0)、B(3,0),動(dòng)點(diǎn)P(x,y)滿足=x2,則點(diǎn)P的軌跡是 ( )
A. 圓 B.橢圓 C.雙曲線 D.拋物線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓=1(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),Q是橢圓外的動(dòng)點(diǎn),滿足=2a,點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足·=0,||≠0.
(1)設(shè)x為點(diǎn)P的橫坐標(biāo),證明||=a+;
(Ⅱ)求點(diǎn)T的軌跡C的方程;
(Ⅲ)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,使△F1MF2的面積S=b2,若存在,求∠F1MF2的正切值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1 有公共的焦點(diǎn),C1的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn).若C1 恰好將線段AB三等分,則( )
A.a(chǎn)2= B.a(chǎn)2=13
C. b2= D.b2= 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)的離心率為,橢圓C上任意一點(diǎn)到橢圓C兩個(gè)焦點(diǎn)的距離之和為6.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx-2與橢圓C交于A,B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
從裝有4粒大小、形狀相同,顏色不同的玻璃球的的瓶中,隨意一次倒出若干粒玻璃球莖(至少一粒),則倒出奇數(shù)粒玻璃球的概率比例出偶數(shù)粒玻璃球的概率 ( )
A.小 B.大
C.相等 D.大小不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com