【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:

網(wǎng)購金額(單位:千元)

頻數(shù)

頻率

網(wǎng)購金額(單位:千元)

頻數(shù)

頻率

[0,0.5)

3

0.05

[1.5,2)

15

0.25

[0.5,1)

[2,2.5)

18

0.30

[1,1.5)

9

0.15

[2.5,3]

若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達(dá)人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達(dá)人”與“網(wǎng)購探者”人數(shù)的比例為2:3.

(1)確定,,,的值,并補(bǔ)全頻率分布直方圖;

(2)①.試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);

②.若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當(dāng)日評為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評為“皇冠店”.

【答案】(1)見解析; (2)根據(jù)估算判斷,該網(wǎng)店當(dāng)日不能被評為“皇冠店”..

【解析】

(1)由題意,根據(jù)頻率分布直方表中的數(shù)據(jù),列出方程,求得,,進(jìn)而求得的值,即可求解;

(2)①由平均數(shù)的計算公式和中位數(shù)公式,即可求得這60名網(wǎng)友的網(wǎng)購金額的平均數(shù)為和中位數(shù);

②根據(jù)數(shù)據(jù)平均數(shù),中位數(shù)即可得到結(jié)論.

(1)由題意,得 ,化簡,得,

解得,∴.

補(bǔ)全的頻率分布直方圖如圖所示:

(2)①設(shè)這60名網(wǎng)友的網(wǎng)購金額的平均數(shù)為.

(千元)

又∵.

∴這60名網(wǎng)友的網(wǎng)購金額的中位數(shù)為(千元),

②∵平均數(shù) ,中位數(shù)

∴根據(jù)估算判斷,該網(wǎng)店當(dāng)日不能被評為“皇冠店”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年美國總統(tǒng)大選過后,有媒體從某公司的全體員工中隨機(jī)抽取了200人,對他們的投票結(jié)果進(jìn)行了統(tǒng)計(不考慮棄權(quán)等其他情況),發(fā)現(xiàn)支持希拉里的一共有95人,其中女員工55人,支持特朗普的男員工有60人.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表:據(jù)此材料,是否有95%的把握認(rèn)為投票結(jié)果與性別有關(guān)?

支持希拉里

支持特朗普

合計

男員工

女員工

合計

(Ⅱ)若從該公司的所有男員工中隨機(jī)抽取3人,記其中支持特朗普的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.(用相應(yīng)的頻率估計概率)
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x﹣7|+1.
(1)求不等式f(x)≤x的解集;
(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知四棱錐PABCD,底面ABCD為菱形,PA平面ABCDABC=60°,E,F分別是BC,PC的中點.

(1)證明:AEPD;

(2)HPD上的動點,EH與平面PAD所成最大角的正切值為,

求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD=

(1)求證:PN∥AB;

(2)求NC與平面BDN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形.底面 .

(I)證明:

(II)設(shè),求棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四面體ABCD中,△ABC是正三角形,AD=CD.(12分)
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)求函數(shù)的最小值和最小正周期;

Ⅱ)已知內(nèi)角的對邊分別為,且,若向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是等比數(shù)列,則下列結(jié)論中正確的是( )

A. 若a1=1,a5=4,則a3=﹣2

B. 若a1+a3>0,則a2+a4>0

C. 若a2>a1,則a3>a2

D. 若a2>a1>0,則a1+a3>2a2

查看答案和解析>>

同步練習(xí)冊答案