8.圓C1:x2+y2+2x+8y-8=0和圓C2:x2+y2-4x-5=0的位置關(guān)系為相交.

分析 求出圓的圓心與半徑,利用圓心距與半徑和與差的關(guān)系判斷即可.

解答 解:由于圓C1:x2+y2+2x+8y-8=0,即 (x+1)2+(y+4)2=25,
表示以C1(-1,-4)為圓心,半徑等于5的圓.
圓C2:x2+y2-4x-5=0,即 (x-2)2+y2=9,表示以C2(2,0)為圓心,半徑等于3的圓.
由于兩圓的圓心距等于$\sqrt{(-1-2)^{2}+(-4-0)^{2}}$=5,大于半徑之差而小于半徑之和,故兩個(gè)圓相交.
故答案為相交.

點(diǎn)評(píng) 本題考查圓與圓的位置關(guān)系的判斷與應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合H={1,2,3,4},集合K={1,1.5,2,0,-1,-2},則H∩K為(  )
A.{1,2}B.{1,2,0,-1}C.(-1,2]D.{1.5,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=ln(1-$\frac{2}{x}$)+1,則f(-7)+f(-5 )+f(-3)+f(-1)+f(3 )+f( 5)+f(7 )+f( 9)=( 。
A.0B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)m,n表示兩條不同的直線,α,β,γ表示三個(gè)不同的平面,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α∥β,m?α,則m∥β;
③若m⊥α,n∥α,則m⊥n;
④若m⊥n,m⊥α,n∥β,則α⊥β.
其中正確命題的序號(hào)是( 。
A.①④B.②③C.①②③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在如圖所示的幾何體中,AF⊥平面ABCD,EF∥AB,四邊形ABCD為矩形,AD=2,AB=AF=2EF=1,P是棱DF的中點(diǎn).
(1)求證:BF∥平面ACP;
(2)求異面直線CE與AP所成角的余弦值;
(3)求二面角D-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“若x>2,則x>1”的否命題是( 。
A.若x<2,則x<1B.若x≤2,則x≤1C.若x≤1,則x≤2D.若x<1,則x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=3$\sqrt{2}$
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P1,P2分別為曲線C1、C2上的兩個(gè)動(dòng)點(diǎn),求線段P1P2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.傳統(tǒng)文化就是文明演化而匯集成的一種反映民族特質(zhì)和風(fēng)貌的民族文化,是民族歷史上各種思想文化、觀念形態(tài)的總體表征.教育部考試中心確定了2017年普通高考部分學(xué)科更注重傳統(tǒng)文化考核.某校為了了解高二年級(jí)中國(guó)數(shù)學(xué)傳統(tǒng)文化選修課的教學(xué)效果,進(jìn)行了一次階段檢測(cè),并從中隨機(jī)抽取80名同學(xué)的成績(jī),然后就其成績(jī)分為A、B、C、D、E五個(gè)等級(jí)進(jìn)行數(shù)據(jù)統(tǒng)計(jì)如下:
成績(jī)人數(shù)
A9
B12
C31
D22
E6
根據(jù)以上抽樣調(diào)查數(shù)據(jù),視頻率為概率.
(1)若該校高二年級(jí)共有1000名學(xué)生,試估算該校高二年級(jí)學(xué)生獲得成績(jī)?yōu)锽的人數(shù);
(2)若等級(jí)A、B、C、D、E分別對(duì)應(yīng)100分、80分、60分、40分、20分,學(xué)校要求“平均分達(dá)60分以上”為“教學(xué)達(dá)標(biāo)”,請(qǐng)問該校高二年級(jí)此階段教學(xué)是否達(dá)標(biāo)?
(3)為更深入了解教學(xué)情況,將成績(jī)等級(jí)為A、B的學(xué)生中,按分層抽樣抽取7人,再?gòu)闹腥我獬槿?名,求恰好抽到1名成績(jī)?yōu)锳的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x0∈R,使得$x_0^2>{e^{x_0}}$”的否定是( 。
A.?x0∈R,使得$x_0^2≤{e^{x_0}}$B.?x0∈R,使得$x_0^2≤{e^{x_0}}$
C.?x0∈R,使得$x_0^2>{e^{x_0}}$D.?x0∈R,使得$x_0^2>{e^{x_0}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案