【題目】在一個不透明的盒子中裝有4個大小、形狀、手感完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4.現(xiàn)每次有放回地從中任意取出一個小球,直到標(biāo)有偶數(shù)的球都取到過就停止.小明用隨機(jī)模擬的方法估計(jì)恰好在第3次停止摸球的概率,利用計(jì)算機(jī)軟件產(chǎn)生隨機(jī)數(shù),每1組中有3個數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

131 432 123 233 234 122 332 141 312 241 122 214 431 241 141 433 223 442

由此可以估計(jì)恰好在第3次停止摸球的概率為(

A.B.C.D.

【答案】D

【解析】

18組隨機(jī)數(shù)中,代表恰好在第3次停止摸球的隨機(jī)數(shù)是432,234,214,442,共4組,然后可算出答案.

18組隨機(jī)數(shù)中,代表恰好在第3次停止摸球的隨機(jī)數(shù)是432234,214,442,共4組,

則恰好在第3次停止摸球的概率為,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PAD為等邊三角形,ABADCD2,∠BAD=∠ADC90°,∠PDC60°,EBC的中點(diǎn).

1)證明:ADPE.

2)求直線PA與平面PDE所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的下頂點(diǎn)及左、右焦點(diǎn),,過橢圓的左焦點(diǎn)的直線與橢圓相交于,兩點(diǎn),線段的中垂線交軸于點(diǎn)且垂足為點(diǎn)

)求橢圓的方程;

)證明:當(dāng)直線斜率變化時為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列滿足: , .為數(shù)列的前項(xiàng)和.

(Ⅰ)求證:對任意正整數(shù),有

(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,求證:對任意,總存在正整數(shù),使得時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,則其體積為_________,若該圓柱的三視圖如圖所示,圓柱表面上的點(diǎn)M在正視圖上的對應(yīng)點(diǎn)為A,圓柱表面上的點(diǎn)N在側(cè)視圖上的對應(yīng)點(diǎn)為B,則在此圓柱側(cè)面上,從MN的路徑中,最短路徑的長度為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓右焦點(diǎn)與拋物線的焦點(diǎn)重合,以原點(diǎn)為圓心、橢圓短半軸長為半徑的圓與直線相切.

1)求橢圓的方程

2)若直線y軸交點(diǎn)為PA、B是橢圓上兩個動點(diǎn),它們在y軸兩側(cè),,的平分線與y軸重合,則直線AB是否過定點(diǎn),若過定點(diǎn),求這個定點(diǎn)坐標(biāo),若不過定點(diǎn)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,某小區(qū)為進(jìn)一步做好新型冠狀病毒肺炎疫情知識的教育,在小區(qū)內(nèi)開展新型冠狀病毒防疫安全公益課在線學(xué)習(xí),在此之后組織了新型冠狀病毒防疫安全知識競賽在線活動.已知進(jìn)入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應(yīng)的名次為第1,2,3,4名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內(nèi)的所有業(yè)主在比賽結(jié)束前對四位業(yè)主的名次進(jìn)行預(yù)測,若預(yù)測完全正確將會獲得禮品,現(xiàn)用a,b,c,d表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預(yù)測排列,記X|a1|+|b2|+|c3|+|d4|

1)求該業(yè)主獲得禮品的概率;

2)求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形ABCD中(如圖1),,,,,點(diǎn)ECD上,且,將沿AE折起,使得平面平面ABCE(如圖2),GAE中點(diǎn).

(Ⅰ)求四棱錐的體積;

(Ⅱ)在線段BD上是否存在點(diǎn)P,使得平面ADE?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案