如圖,在幾何體中,點(diǎn)在平面ABC內(nèi)的正投影分別為A,B,C,且,E為中點(diǎn),.
(1)求證;CE∥平面,
(2)求證:平面平面
詳見解析
解析試題分析:(1)通過證明線線平行,證明線面平行,所以取的中點(diǎn),連接,通過證明,從而證明;(2)根據(jù)已知條件:為正方形,證出,,所以,所以,得出面,面,平面平面. 證明平行和垂直都是最基本的證明問題,要熟練掌握判定定理,可以由結(jié)論出發(fā),逐步找到證明的充分條件,然后再邏輯順序?qū)懗鲎C明過程,屬于中檔題.
試題解析:(1)由題意知:
1分
取中點(diǎn),連,為中點(diǎn),
四邊形為平行四邊形
4分
面,面
面 6分
(2)面,
又,,面 8分
面,
四邊形為正方形, 10分
,面
面
平面平面 12分
考點(diǎn):1.線面平行的判定定理;2.面面垂直的判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在幾何體ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M為線段BD的中點(diǎn),MC∥AE,且AE=MC=.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點(diǎn),求證:平面AMN∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,平面平面,四邊形為矩形,△為等邊三角形.為的中點(diǎn),.
(1)求證:;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,底面是正方形,與交于點(diǎn)底面,為的中點(diǎn).
(1)求證:平面;
(2)若,在線段上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是邊長為2的正方形,側(cè)面底面,且為等腰直角三角形,,、分別為、的中點(diǎn).
(1)求證://平面 ;
(2)若線段中點(diǎn)為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平行四邊形ABCD(圖1)中,AB=4,BC=5,對(duì)角線AC=3,將三角形ACD沿AC折起至PAC位置(圖2),使二面角為600,G,H分別是PA,PC的中點(diǎn).
(1)求證:PC平面BGH;
(2)求平面PAB與平面BGH夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角梯形ABCD中,AD//BC,∠ADC=90º,AE⊥平面ABCD,EF//CD,BC=CD=AE=EF==1.
(Ⅰ)求證:CE//平面ABF;
(Ⅱ)求證:BE⊥AF;
(Ⅲ)在直線BC上是否存在點(diǎn)M,使二面角E-MD-A的大小為?若存在,求出CM的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com