【題目】在2018年高校自主招生期間,某校把學生的平時成績按“百分制”折算,選出前名學生,并對這名學生按成績分組,第一組,第二組,第三組,第四組,第五組.如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.

(1)請寫出第一、二、三、五組的人數(shù),并在圖中補全頻率分布直方圖;

(2)若大學決定在成績高的第3,4,5組中用分層抽樣的方法抽取6名學生進行面試.

①若大學本次面試中有,,三位考官,規(guī)定獲得至少兩位考官的認可即為面試成功,且各考官面試結果相互獨立.已知甲同學已經(jīng)被抽中,并且通過這三位考官面試的概率依次為,,,求甲同學面試成功的概率;

②若大學決定在這6名學生中隨機抽取3名學生接受考官的面試,第3組有名學生被考官面試,求的分布列和數(shù)學期望.

【答案】(1) 45,75,90,30,圖見解析.

(2)① .②分布列見解析;.

【解析】分析:(1)第四組的人數(shù)為60,所以總?cè)藬?shù)為300,再利用直方圖性質(zhì)與等差數(shù)列的性質(zhì)即可得出;

(2)①設事件為“甲同學面試成功”,利用相互獨立與互斥事件的概率計算公式即可得出

②由題意可得,,,即可得出分布列與數(shù)學期望.

詳解:(1)第一、二、三、五組的人數(shù)分別是45,75,90,30,

(2)①設事件為“甲同學面試成功”.則:

.

②由題意得:

,

,.

0

1

2

3

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《張丘建算經(jīng)》是公元5世紀中國古代內(nèi)容豐富的數(shù)學著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.

(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:

A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;

B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;

C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):表示種植前樹木的高度,取).

(1)若要求6年內(nèi)樹木的高度超過5米,你會選擇哪種樹木?為什么?

(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知菱形所在平面,,為線段的中點, 為線段上一點,且

(1)求證: 平面;

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),為自然對數(shù)的底數(shù).

(Ⅰ)當時,求函數(shù)在區(qū)間上的最大值;

(Ⅱ)若函數(shù)只有一個零點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

(1)求回歸直線方程,其中,.

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學40名數(shù)學教師,按年齡從小到大編號為1,2,…40,F(xiàn)從中任意選取6人分成兩組分配到A,B兩所學校從事支教工作,其中三名編號較小的教師在一組,三名編號較大的教師在另一組,那么編號為8,12,28的數(shù)學教師同時入選并被分配到同一所學校的方法種數(shù)是

A. 220 B. 440 C. 255 D. 510

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當,求函數(shù)的單調(diào)區(qū)間;

(2)當,若函數(shù)在區(qū)間上的最小值是,的值;

(3)設是函數(shù)圖象上任意不同的兩點,線段的中點為,直線的斜率為.證明:.

查看答案和解析>>

同步練習冊答案